#### Appendix C

#### Testing WEPP-Mine: Case Application to Big Sky Mine, Colstrip, MT

Shuhui Dun, Joan Q. Wu, William J. Elliott

Watersheds in the Big Sky Mine, Areas A and B, were used for testing the WEPP-Mine model with the default inputs. These data, including the USGS 30-m DEM and land cover and the USDA SSURGO soil data, were presumed to be representative of the pre-mining conditions. Seven watersheds with available long-term daily streamflow data at the watershed outlets were selected, one was in Area A and the other six, nested, were along Lee Coulee in Area B (Table 1). Mining in Area A was completed in 1989. Post-mining reclamation activities, including regrading, topsoil replacement, and revegetation of the mined areas above the sediment ponds and traps in Area A were completed in 1992 (BSCC, 2009a). For Area B, the revegetation of the reclaimed mine lands above each outfall was started at different times but all during the period of 1993–2007 (BSCC, 2009b).

| Obs. Point             | BPSFL                 | BRTFL                    | BMMFL                 | BS33FL                | BLFFL                                 | BBBFL                                      | AFL50-1    |
|------------------------|-----------------------|--------------------------|-----------------------|-----------------------|---------------------------------------|--------------------------------------------|------------|
| Longitude              | -106.717              | -106.692                 | -106.675              | -106.633              | -106.674                              | -106.641                                   | -106.603   |
| Latitude               | 45.824                | 45.815                   | 45.806                | 45.79                 | 45.802                                | 45.8                                       | 45.835     |
| Stream                 | Lee Coulee,<br>Area B | Lee<br>Coulee,<br>Area B | Lee Coulee,<br>Area B | Lee Coulee,<br>Area B | Fossil Fork,<br>Lee Coulee,<br>Area B | Bad Bob<br>Gutch, Lee<br>Coulee,<br>Area B | Area A     |
| Collection<br>Area, ha | 581                   | 992                      | 1308                  | 4067                  | 760                                   | 794                                        | 168        |
| Obs. Start             | 10/18/1984            | 3/14/1985                | 10/18/1984            | 2/17/1984             | 2/28/1985                             | 3/15/1985                                  | 8/9/2000   |
| Obs. End               | 12/31/2006            | 5/16/2001                | 6/15/2003             | 12/31/2006            | 5/11/1999                             | 9/30/1989                                  | 12/31/2006 |
| Obs. Year              | 22                    | 17                       | 19                    | 23                    | 15                                    | 5                                          | 6          |
| Observed ru            | noff at specific      | recurrence in            | terval, mm            |                       |                                       |                                            |            |
| 2-yr                   | 0.57                  | 0.11                     | 0.07                  | 0.05                  | 0.77                                  | 0.62                                       | 0.00       |
| 5-yr                   | 1.31                  | 0.38                     | 2.06                  | 0.98                  | 2.15                                  | 2.16                                       | 0.01       |
| 10-yr                  | 1.63                  | 0.77                     | 9.03                  | 2.28                  | 3.83                                  |                                            | 1.06       |
| 20-yr                  |                       | 0.88                     | 9.33                  |                       |                                       |                                            |            |
| 25-yr                  | 9.38                  |                          |                       | 3.83                  |                                       |                                            |            |
| WEPP-simu              | lated runoff at       | specific recurr          | ence interval, n      | nm                    |                                       |                                            |            |
| 2-yr                   | 0.02                  | 0.01                     |                       |                       | 0                                     | 0                                          | 0.06       |
| 5-yr                   | 0.76                  | 0.39                     |                       |                       | 0.03                                  | 0.06                                       | 1.11       |
| 10-yr                  | 2.81                  | 1.57                     |                       |                       | 0.07                                  | 0.09                                       | 2.67       |
| 25-yr                  | 15.9                  | 12.2                     |                       |                       | 0.34                                  | 0.64                                       | 8.97       |
| WEPP-simu              | lated sediment        | yield at specif          | ic recurrence in      | terval, t/ha          |                                       |                                            |            |
| 2-yr                   | 0                     | 0                        |                       |                       | 0                                     | 0                                          | 0          |
| 5-yr                   | 0.02                  | 0.02                     |                       |                       | 0                                     | 0                                          | 0.12       |
| 10-yr                  | 0.11                  | 0.13                     |                       |                       | 0                                     | 0.01                                       | 0.52       |
| 25-yr                  | 0.95                  | 1.24                     |                       |                       | 0.02                                  | 0.07                                       | 2.41       |

Table 1. Study watersheds in Areas A and B, Big Sky Mine

From upstream to downstream of Lee Coulee, there are four observation points, BPSFL (most upstream), BRTFL, BMMFL, and BS33FL (most downstream), and they were used as the outlets of our study watersheds (Fig. 1–4). BPSFL has a drainage area of 581 ha, and BS33FL 4067 ha, the largest of all the study watersheds. The other two observation points chosen as watershed outlets in Area B are on the two major tributaries of Lee Coulee: BLFFL on Fossil Fork (Fig. 5) and BBBFL on Bad Bob Gultch (Fig. 6). The watershed AFL50-1 in Area A has a collection area of 168 ha, the smallest of the seven study watersheds (Fig. 7).

Daily runoff values recorded at the monitoring points for various observation periods from 1984 to 2006 were from the Big Sky Mine Database 2007, in Microsoft Access files submitted by the mine to MTDEQ (Table 1).

Tables 2–8 show the yearly precipitation maximum series observed at the NOAA weather station at Colstrip, MT (45.883°, 106.633°, NOAA, 2011) and the yearly runoff maximum series observed at the study watersheds. Most of the maximum runoff values occurred during summer and fall; some occurred during the spring snow melt season. Maximum runoff is not always coincident with the maximum precipitation in the study area. Observed daily runoff at the BPSFL and the observed precipitation at the Colstrip Weather Station during (1984–2006) are shown in Fig. 8.1–11. Runoff was mainly observed during or after summer and fall thunderstorms or spring snowmelts. No evident pattern can be seen between the amount of precipitation and the occurrence of runoff events (Figs. 8 and 9).

WEPP simulations for the watersheds smaller than 1000 ha were conducted using the available weather data from the NOAA weather station at Colstrip, including observed daily precipitation and maximum and minimum temperatures for 1984–2009. The remaining climatic inputs, including precipitation duration, time to peak, peak intensity, solar radiation, dew-point temperature, and wind direction and velocity were generated using CLIGEN (Nicks et al., 1995) based on the statistics from the weather station at Branderberg, MT, the nearest weather station to the study area included in the WEPP database. Other model inputs were the default inputs in WEPP-Mine, including the National USGS 30-m Elevation DEM (Gesch et al., 2002; Gesch, 2007), the USGS 2006 National Land Cover grid (Homer et al., 2004) for landuse and management, and the SSURGO soil data (NRCS, 2011) for each study watershed. "Watershed only" simulations, which produced streamflow at the observation points, were conducted for 26 years covering the period (1984–2009) for which observed streamflow data were available.

WEPP-simulated runoff events are shown in Fig. 10.1–13. The simulated events do not match well with those observed. The main reasons could be that (i) the thunderstorms observed at the Colstrip weather station were localized, not always extending to the study area, and (ii) using CLIGEN-generated precipitation characteristics, instead of the actual, observed, may have altered the rainfall intensity of the thunderstorms. Hence, the assessment of WEPP-Mine performance in this study was conducted using return-period analysis, a statistical measurement commonly used for risk analysis.

The return periods of the runoff events were estimated by applying the Weibull formula to annual maximum series: T = (N + 1)/m, where T is the return period, N is the number of the observation or simulation years, and m is the rank of the annual maxima event. The results of the return-period analysis and a summary of the landuse and soils of each study watershed are presented in the section of WEPP simulation inputs and results. WEPP-simulated runoff for the return periods of 2, 5, 10, and 25 years generally fall in the range of the observed (Table 1). Future efforts should be devoted to improving site-specific climatic, soil, and management inputs for the individual test watersheds.

# 1. Study Watersheds

# 1.1 Watershed with observation point BPSFL

Area (ha): 583 (cells: 6480) Number of Representative Hillslopes: 82 Number of Channels: 33 Number of Impoundments: 0 Outlet Location: -106.7167, 45.8244 Reference Point: 0 Minimum Source Channel Length (m): 100 Critical Source Area (ha): 10

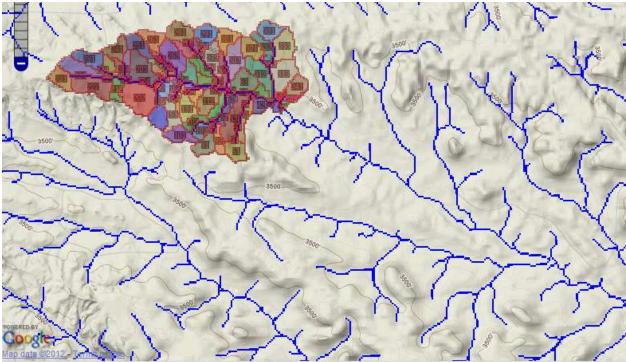



Fig. 1 The BPSFL watershed

| Water<br>Year | Tot.<br>Precip.<br>mm | Max.<br>Precip. mm | MaxP<br>Month | MaxP<br>Day | Tot.<br>Runoff<br>mm | Max.<br>Runoff mm | MaxRF<br>Month | MaxRF<br>Day |
|---------------|-----------------------|--------------------|---------------|-------------|----------------------|-------------------|----------------|--------------|
| 1984          | 239                   | 20.4               | 6             | 8           |                      | itunon inin       | month          | Duj          |
| 1985          | 309                   | 30.1               | 7             | 29          | 1.08                 | 0.40              | 3              | 17           |
| 1986          | 370                   | 42.1               | 9             | 24          | 1.99                 | 1.28              | 2              | 24           |
| 1987          | 377                   | 27.0               | 8             | 24          | 13.80                | 9.38              | 8              | 14           |
| 1988          | 185                   | 16.3               | 9             | 18          | 4.39                 | 1.63              | 9              | 18           |
| 1989          | 357                   | 20.9               | 6             | 16          | 1.45                 | 0.69              | 7              | 16           |
| 1990          | 302                   | 37.5               | 5             | 24          | 0.53                 | 0.27              | 8              | 24           |
| 1991          | 384                   | 56.1               | 9             | 15          | 3.26                 | 1.05              | 9              | 15           |
| 1992          | 342                   | 28.6               | 8             | 23          | 1.25                 | 0.38              | 6              | 30           |
| 1993          | 407                   | 50.2               | 6             | 8           | 1.56                 | 0.69              | 7              | 1            |
| 1994          | 333                   | 31.6               | 9             | 15          | 0.56                 | 0.21              | 9              | 14           |
| 1995          | 447                   | 31.1               | 10            | 15          | 0.26                 | 0.11              | 5              | 12           |
| 1996          | 316                   | 31.6               | 5             | 24          | 0.06                 | 0.05              | 7              | 25           |
| 1997          | 418                   | 45.4               | 5             | 26          | 1.44                 | 0.57              | 7              | 20           |
| 1998          | 350                   | 26.0               | 9             | 12          | 1.01                 | 0.46              | 8              | 18           |
| 1999          | 419                   | 34.2               | 4             | 20          | 3.09                 | 1.31              | 8              | 12           |
| 2000          | 362                   | 30.1               | 6             | 9           | 1.34                 | 0.72              | 6              | 9            |
| 2001          | 326                   | 40.8               | 6             | 29          | 3.61                 | 1.60              | 7              | 18           |
| 2002          | 387                   | 45.1               | 7             | 16          | 0.30                 | 0.29              | 7              | 17           |
| 2003          | 367                   | 20.7               | 3             | 18          | 0.11                 | 0.11              | 6              | 4            |
| 2004          | 291                   | 26.8               | 10            | 29          | 2.07                 | 1.20              | 2              | 18           |
| 2005          | 493                   | 67.3               | 5             | 8           | 0.96                 | 0.37              | 6              | 28           |
| 2006          | 398                   | 49.2               | 10            | 5           | 0.10                 | 0.04              | 7              | 2            |
| 2007          | 493                   | 66.8               | 6             | 7           |                      |                   |                |              |
| 2008          | 495                   | 36.5               | 5             | 24          |                      |                   |                |              |
| 2009          | 359                   | 33.4               | 8             | 6           |                      |                   |                |              |

Table 2. Annual maxima of precipitation at Colstrip weather station and observed streamflow at BPSFL

Note: Precipitation was observed during 1984/01/01-2009/12/31 and runoff 1984/10/18-2006/12/31.

### 1.2 Watershed with observation point BRTFL

Area (ha): 994 (cells: 11046) Number of Representative Hillslopes: 120 Number of Channels: 51 Number of Impoundments: 0 Outlet Location: -106.6918, 45.814 Reference Point: 0 Minimum Source Channel Length (m): 100 Critical Source Area (ha): 10

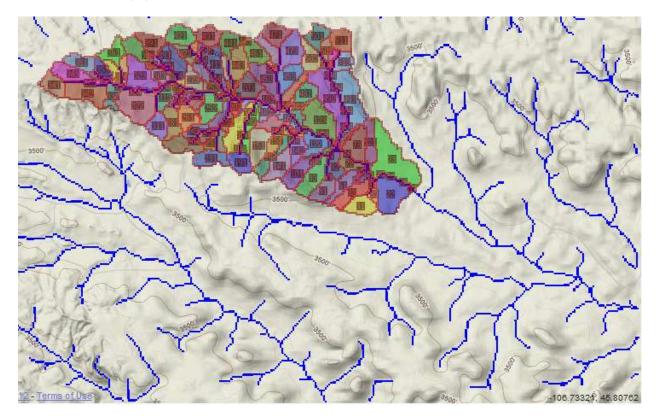



Fig. 2 The BRTFL watershed

| Water<br>Year | Tot.<br>Precip.<br>Mm | Max.<br>Precip. mm | MaxP<br>Month | MaxP<br>Day | Tot.<br>Runoff<br>mm | Max.<br>Runoff mm | MaxRF<br>Month | MaxRF<br>Day |
|---------------|-----------------------|--------------------|---------------|-------------|----------------------|-------------------|----------------|--------------|
| 1984          | 239                   | 20.4               | 6             | 8           |                      |                   |                |              |
| 1985          | 309                   | 30.1               | 7             | 29          | 2.33                 | 0.26              | 3              | 17           |
| 1986          | 370                   | 42.1               | 9             | 24          | 2.83                 | 0.16              | 9              | 25           |
| 1987          | 377                   | 27.0               | 8             | 24          | 0.77                 | 0.08              | 5              | 26           |
| 1988          | 185                   | 16.3               | 9             | 18          | 2.16                 | 0.88              | 2              | 12           |
| 1989          | 357                   | 20.9               | 6             | 16          | 1.07                 | 0.38              | 3              | 8            |
| 1990          | 302                   | 37.5               | 5             | 24          | 1.62                 | 0.37              | 4              | 26           |
| 1991          | 384                   | 56.1               | 9             | 15          | 2.50                 | 0.08              | 4              | 16           |
| 1992          | 342                   | 28.6               | 8             | 23          | 1.15                 | 0.08              | 2              | 25           |
| 1993          | 407                   | 50.2               | 6             | 8           | 4.89                 | 0.77              | 3              | 2            |
| 1994          | 333                   | 31.6               | 9             | 15          | 1.27                 | 0.11              | 3              | 4            |
| 1995          | 447                   | 31.1               | 10            | 15          | 0.87                 | 0.13              | 10             | 16           |
| 1996          | 316                   | 31.6               | 5             | 24          | 0.33                 | 0.11              | 1              | 10           |
| 1997          | 418                   | 45.4               | 5             | 26          | 0.00                 | 0.00              | 2              | 3            |
| 1998          | 350                   | 26.0               | 9             | 12          | 0.00                 | 0.00              | 10             | 1            |
| 1999          | 419                   | 34.2               | 4             | 20          | 0.00                 | 0.00              | 10             | 1            |
| 2000          | 362                   | 30.1               | 6             | 9           | 0.00                 | 0.00              | 10             | 1            |
| 2001          | 326                   | 40.8               | 6             | 29          | 0.00                 | 0.00              | 10             | 1            |
| 2002          | 387                   | 45.1               | 7             | 16          |                      |                   |                |              |
| 2003          | 367                   | 20.7               | 3             | 18          |                      |                   |                |              |
| 2004          | 291                   | 26.8               | 10            | 29          |                      |                   |                |              |
| 2005          | 493                   | 67.3               | 5             | 8           |                      |                   |                |              |
| 2006          | 398                   | 49.2               | 10            | 5           |                      |                   |                |              |
| 2007          | 493                   | 66.8               | 6             | 7           |                      |                   |                |              |
| 2008          | 495                   | 36.5               | 5             | 24          |                      |                   |                |              |
| 2009          | 359                   | 33.4               | 8             | 6           |                      |                   |                |              |

Table 3. Annual maxima of precipitation at Colstrip weather station and observed streamflow at BRTFL

Note: Precipitation was observed during 1984/01/01-2009/12/31 and runoff 1985/03/14-2001/05/16.

# 1.3 Watershed with observation point BMMFL

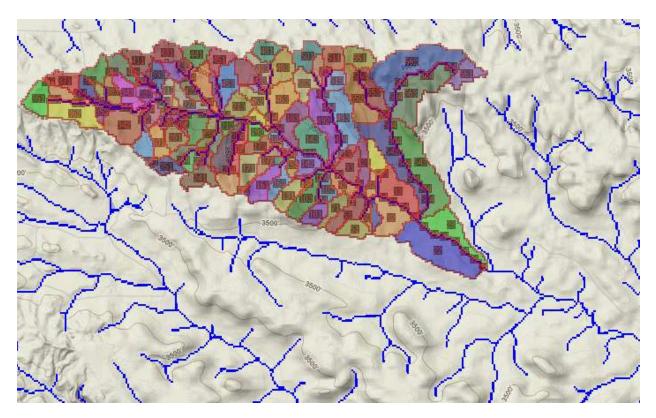



Fig. 3 The BMMFL watershed

| Water<br>Year | Tot. Precip.<br>mm | Max.<br>Precip. mm | MaxP<br>Month | MaxP<br>Day | Tot. Runoff<br>mm | Max.<br>Runoff<br>mm | MaxRF<br>Month | MaxRF<br>Day |
|---------------|--------------------|--------------------|---------------|-------------|-------------------|----------------------|----------------|--------------|
| 1984          | 239                | 20.4               | 6             | 8           |                   |                      |                |              |
| 1985          | 309                | 30.1               | 7             | 29          | 3.92              | 0.80                 | 8              | 2            |
| 1986          | 370                | 42.1               | 9             | 24          | 3.89              | 2.06                 | 2              | 24           |
| 1987          | 377                | 27.0               | 8             | 24          | 2.14              | 0.46                 | 3              | 19           |
| 1988          | 185                | 16.3               | 9             | 18          | 10.88             | 2.52                 | 2              | 17           |
| 1989          | 357                | 20.9               | 6             | 16          | 42.50             | 9.03                 | 3              | 8            |
| 1990          | 302                | 37.5               | 5             | 24          | 0.13              | 0.04                 | 1              | 9            |
| 1991          | 384                | 56.1               | 9             | 15          | 0.00              | 0.00                 | 10             | 1            |
| 1992          | 342                | 28.6               | 8             | 23          | 0.00              | 0.00                 | 10             | 1            |
| 1993          | 407                | 50.2               | 6             | 8           | 0.93              | 0.67                 | 7              | 3            |
| 1994          | 333                | 31.6               | 9             | 15          | 10.50             | 9.33                 | 3              | 3            |
| 1995          | 447                | 31.1               | 10            | 15          | 13.41             | 0.34                 | 12             | 3            |
| 1996          | 316                | 31.6               | 5             | 24          | 3.00              | 0.31                 | 5              | 21           |
| 1997          | 418                | 45.4               | 5             | 26          | 1.56              | 0.07                 | 11             | 9            |
| 1998          | 350                | 26.0               | 9             | 12          | 0.00              | 0.00                 | 10             | 1            |
| 1999          | 419                | 34.2               | 4             | 20          | 0.00              | 0.00                 | 10             | 1            |
| 2000          | 362                | 30.1               | 6             | 9           | 0.00              | 0.00                 | 8              | 15           |
| 2001          | 326                | 40.8               | 6             | 29          | 0.00              | 0.00                 | 10             | 1            |
| 2002          | 387                | 45.1               | 7             | 16          | 0.01              | 0.01                 | 9              | 8            |
| 2003          | 367                | 20.7               | 3             | 18          | 0.00              | 0.00                 | 10             | 1            |
| 2004          | 291                | 26.8               | 10            | 29          |                   |                      |                |              |
| 2005          | 493                | 67.3               | 5             | 8           |                   |                      |                |              |
| 2006          | 398                | 49.2               | 10            | 5           |                   |                      |                |              |
| 2007          | 493                | 66.8               | 6             | 7           |                   |                      |                |              |
| 2008          | 495                | 36.5               | 5             | 24          |                   |                      |                |              |
| 2009          | 359                | 33.4               | 8             | 6           |                   |                      |                |              |

Table 4. Annual maxima of precipitation at Colstrip weather station and observed streamflow at BMMFL

Note: Precipitation was observed during 1984/01/01-2009/12/31 and runoff 1984/10/18-2003/06/15.

1.4 Watershed with observation point BS33FL

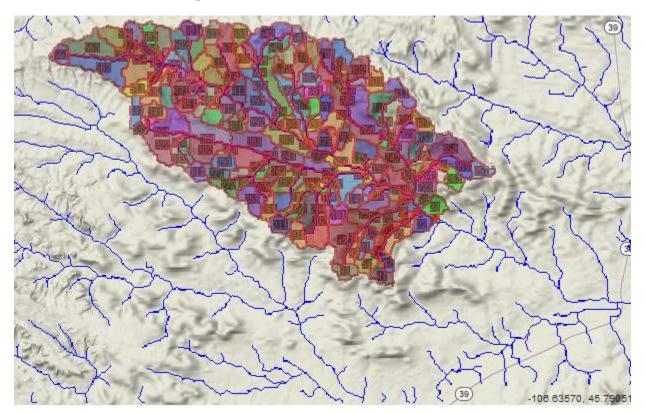



Fig. 4 The BS33FL watershed

| Water<br>Year | Tot.<br>Precip. mm | Max.<br>Precip. mm | Max P<br>Month | Max P<br>Day | Tot.<br>Runoff mm | Max.<br>Runoff mm | Max RF<br>Month | Max RF<br>Day |
|---------------|--------------------|--------------------|----------------|--------------|-------------------|-------------------|-----------------|---------------|
| 1984          | 239                | 20.4               | 6              | 8            | 0                 | 0                 | 2               | 17            |
| 1985          | 309                | 30.1               | 7              | 29           | 3.55              | 1.74              | 2               | 28            |
| 1986          | 370                | 42.1               | 9              | 24           | 0.02              | 0.01              | 9               | 25            |
| 1987          | 377                | 27.0               | 8              | 24           | 2.59              | 2.28              | 8               | 26            |
| 1988          | 185                | 16.3               | 9              | 18           | 2.38              | 0.87              | 2               | 12            |
| 1989          | 357                | 20.9               | 6              | 16           | 6.34              | 3.83              | 3               | 8             |
| 1990          | 302                | 37.5               | 5              | 24           | 0.10              | 0.05              | 6               | 17            |
| 1991          | 384                | 56.1               | 9              | 15           | 0.25              | 0.14              | 9               | 14            |
| 1992          | 342                | 28.6               | 8              | 23           | 0.28              | 0.11              | 6               | 15            |
| 1993          | 407                | 50.2               | 6              | 8            | 0.57              | 0.23              | 3               | 6             |
| 1994          | 333                | 31.6               | 9              | 15           | 1.76              | 0.98              | 3               | 2             |
| 1995          | 447                | 31.1               | 10             | 15           | 0.04              | 0.03              | 3               | 12            |
| 1996          | 316                | 31.6               | 5              | 24           | 2.58              | 1.84              | 2               | 7             |
| 1997          | 418                | 45.4               | 5              | 26           | 0.15              | 0.09              | 7               | 19            |
| 1998          | 350                | 26.0               | 9              | 12           | 0.00              | 0.00              | 9               | 12            |
| 1999          | 419                | 34.2               | 4              | 20           | 0.00              | 0.00              | 8               | 12            |
| 2000          | 362                | 30.1               | 6              | 9            | 0.00              | 0.00              | 9               | 1             |
| 2001          | 326                | 40.8               | 6              | 29           | 0.00              | 0.00              | 10              | 1             |
| 2002          | 387                | 45.1               | 7              | 16           | 0.00              | 0.00              | 9               | 8             |
| 2003          | 367                | 20.7               | 3              | 18           | 0.00              | 0.00              | 6               | 4             |
| 2004          | 291                | 26.8               | 10             | 29           | 0.08              | 0.05              | 2               | 19            |
| 2005          | 493                | 67.3               | 5              | 8            | 0.38              | 0.05              | 5               | 10            |
| 2006          | 398                | 49.2               | 10             | 5            | 0.02              | 0.01              | 6               | 14            |
| 2007          | 493                | 66.8               | 6              | 7            | 0.00              | 0.00              | 10              | 31            |
| 2008          | 495                | 36.5               | 5              | 24           |                   |                   |                 |               |
| 2009          | 359                | 33.4               | 8              | 6            |                   |                   |                 |               |

Table 5. Annual maxima of precipitation at Colstrip weather station and observed streamflow at BMMFL

Note: Precipitation was observed during 1984/01/01-2009/12/31 and runoff 1984/02/17-2006/12/31.

# 1.5 The BLFFL watershed

Area (ha): 769 (cells: 8542) Number of Representative Hillslopes: 71 Number of Channels: 29 Number of Impoundments: 0 Outlet Location: -106.6721, 45.8014 Reference Point: 0 Minimum Source Channel Length (m): 100 Critical Source Area (ha): 10

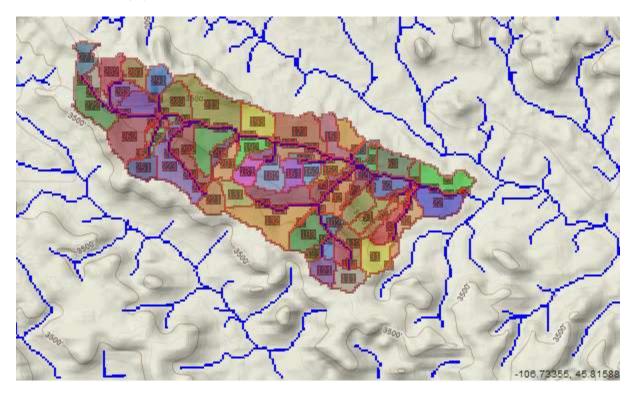



Fig.5 The BLFFL watershed

| Water | Tot.<br>Precip. | Max.       | MaxP  | MaxP | Tot.<br>Runoff | Max.      | MaxRF | MaxRF |
|-------|-----------------|------------|-------|------|----------------|-----------|-------|-------|
| Year  | mm              | Precip. mm | Month | Day  | mm             | Runoff mm | Month | Day   |
| 1984  | 239             | 20.4       | 6     | 8    |                |           |       |       |
| 1985  | 309             | 30.1       | 7     | 29   | 9.52           | 5.98      | 8     | 2     |
| 1986  | 370             | 42.1       | 9     | 24   | 1.28           | 0.44      | 2     | 24    |
| 1987  | 377             | 27.0       | 8     | 24   | 7.52           | 3.83      | 7     | 31    |
| 1988  | 185             | 16.3       | 9     | 18   | 5.86           | 2.15      | 9     | 18    |
| 1989  | 357             | 20.9       | 6     | 16   | 1.69           | 0.77      | 6     | 10    |
| 1990  | 302             | 37.5       | 5     | 24   | 1.68           | 1.20      | 6     | 15    |
| 1991  | 384             | 56.1       | 9     | 15   | 3.29           | 1.31      | 9     | 15    |
| 1992  | 342             | 28.6       | 8     | 23   | 2.28           | 1.14      | 6     | 15    |
| 1993  | 407             | 50.2       | 6     | 8    | 1.53           | 0.49      | 7     | 2     |
| 1994  | 333             | 31.6       | 9     | 15   | 1.80           | 1.42      | 3     | 3     |
| 1995  | 447             | 31.1       | 10    | 15   | 0.57           | 0.15      | 10    | 16    |
| 1996  | 316             | 31.6       | 5     | 24   | 1.16           | 0.61      | 2     | 6     |
| 1997  | 418             | 45.4       | 5     | 26   | 0.00           | 0.00      | 10    | 1     |
| 1998  | 350             | 26.0       | 9     | 12   | 0.00           | 0.00      | 10    | 1     |
| 1999  | 419             | 34.2       | 4     | 20   | 0.00           | 0.00      | 10    | 1     |
| 2000  | 362             | 30.1       | 6     | 9    |                |           |       |       |
| 2001  | 326             | 40.8       | 6     | 29   |                |           |       |       |
| 2002  | 387             | 45.1       | 7     | 16   |                |           |       |       |
| 2003  | 367             | 20.7       | 3     | 18   |                |           |       |       |
| 2004  | 291             | 26.8       | 10    | 29   |                |           |       |       |
| 2005  | 493             | 67.3       | 5     | 8    |                |           |       |       |
| 2006  | 398             | 49.2       | 10    | 5    |                |           |       |       |
| 2007  | 493             | 66.8       | 6     | 7    |                |           |       |       |
| 2008  | 495             | 36.5       | 5     | 24   |                |           |       |       |
| 2009  | 359             | 33.4       | 8     | 6    |                |           |       |       |

Table 6. Annual maxima of precipitation at Colstrip weather station and observed streamflow at BLFFL

Note: Precipitation was observed during 1984/01/01-2009/12/31 and runoff 1985/2/28-1999/5/11.

# 1.6 The BBBFL watershed

Area (ha): 800 (cells: 8889) Number of Representative Hillslopes: 66 Number of Channels: 27 Number of Impoundments: 0 Outlet Location: -106.6415, 45.7965 Reference Point: 0 Minimum Source Channel Length (m): 100 Critical Source Area (ha): 10

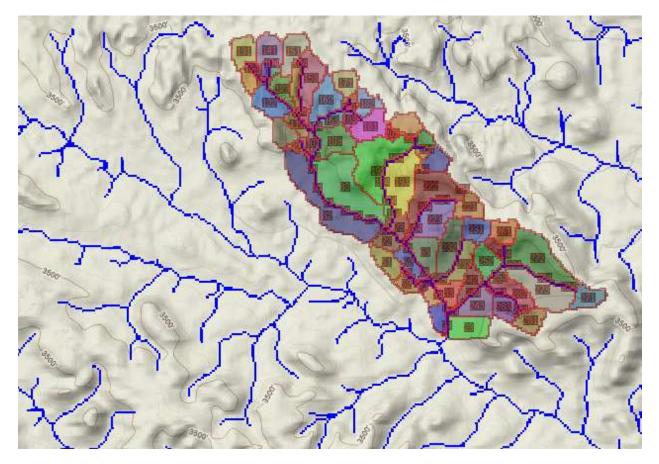



Fig.6 The BBBFL watershed

| Water<br>Year | Tot.<br>Precip.<br>mm | Max.<br>Precip. mm | MaxP<br>Month | MaxP<br>Day | Tot.<br>Runoff<br>mm | Max.<br>Runoff mm | MaxRF<br>Month | MaxRF<br>Day |
|---------------|-----------------------|--------------------|---------------|-------------|----------------------|-------------------|----------------|--------------|
| 1984          | 239                   | 20.4               | 6             | 8           |                      |                   |                | v            |
| 1985          | 309                   | 30.1               | 7             | 29          | 0.41                 | 0.17              | 2              | 28           |
| 1986          | 370                   | 42.1               | 9             | 24          | 0.63                 | 0.60              | 2              | 22           |
| 1987          | 377                   | 27.0               | 8             | 24          | 0.67                 | 0.62              | 8              | 26           |
| 1988          | 185                   | 16.3               | 9             | 18          | 2.63                 | 0.82              | 6              | 13           |
| 1989          | 357                   | 20.9               | 6             | 16          | 3.40                 | 2.16              | 3              | 8            |
| 1990          | 302                   | 37.5               | 5             | 24          |                      |                   |                |              |
| 1991          | 384                   | 56.1               | 9             | 15          |                      |                   |                |              |
| 1992          | 342                   | 28.6               | 8             | 23          |                      |                   |                |              |
| 1993          | 407                   | 50.2               | 6             | 8           |                      |                   |                |              |
| 1994          | 333                   | 31.6               | 9             | 15          |                      |                   |                |              |
| 1995          | 447                   | 31.1               | 10            | 15          |                      |                   |                |              |
| 1996          | 316                   | 31.6               | 5             | 24          |                      |                   |                |              |
| 1997          | 418                   | 45.4               | 5             | 26          |                      |                   |                |              |
| 1998          | 350                   | 26.0               | 9             | 12          |                      |                   |                |              |
| 1999          | 419                   | 34.2               | 4             | 20          |                      |                   |                |              |
| 2000          | 362                   | 30.1               | 6             | 9           |                      |                   |                |              |
| 2001          | 326                   | 40.8               | 6             | 29          |                      |                   |                |              |
| 2002          | 387                   | 45.1               | 7             | 16          |                      |                   |                |              |
| 2003          | 367                   | 20.7               | 3             | 18          |                      |                   |                |              |
| 2004          | 291                   | 26.8               | 10            | 29          |                      |                   |                |              |
| 2005          | 493                   | 67.3               | 5             | 8           |                      |                   |                |              |
| 2006          | 398                   | 49.2               | 10            | 5           |                      |                   |                |              |
| 2007          | 493                   | 66.8               | 6             | 7           |                      |                   |                |              |
| 2008          | 495                   | 36.5               | 5             | 24          |                      |                   |                |              |
| 2009          | 359                   | 33.4               | 8             | 6           |                      |                   |                |              |

Table 7. Annual maxima of precipitation at Colstrip weather station and observed streamflow at BBBFL

Note: Precipitation was observed during 1984/01/01-2009/12/31 and runoff 1985/02/28-1989/09/30.

# 1.7 The AFL50-1 watershed

Area (ha): 166 (cells: 1846) Number of Representative Hillslopes: 12 Number of Channels: 5 Number of Impoundments: 0 Outlet Location: -106.6019, 45.8355 Reference Point: 0 Minimum Source Channel Length (m): 100 Critical Source Area (ha): 10

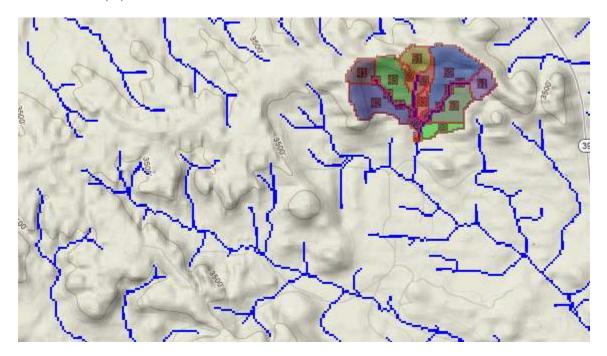



Fig.7 The AFL50-1 watershed

| Water | Tot.<br>Precip. | Max.       | MaxP  | MaxP | Tot.<br>Runoff | Max.      | MaxRF | MaxRF |
|-------|-----------------|------------|-------|------|----------------|-----------|-------|-------|
| Year  | mm              | Precip. mm | Month | Day  | mm             | Runoff mm | Month | Day   |
| 1984  | 239             | 20.4       | 6     | 8    |                |           |       |       |
| 1985  | 309             | 30.1       | 7     | 29   |                |           |       |       |
| 1986  | 370             | 42.1       | 9     | 24   |                |           |       |       |
| 1987  | 377             | 27.0       | 8     | 24   |                |           |       |       |
| 1988  | 185             | 16.3       | 9     | 18   |                |           |       |       |
| 1989  | 357             | 20.9       | 6     | 16   |                |           |       |       |
| 1990  | 302             | 37.5       | 5     | 24   |                |           |       |       |
| 1991  | 384             | 56.1       | 9     | 15   |                |           |       |       |
| 1992  | 342             | 28.6       | 8     | 23   |                |           |       |       |
| 1993  | 407             | 50.2       | 6     | 8    |                |           |       |       |
| 1994  | 333             | 31.6       | 9     | 15   |                |           |       |       |
| 1995  | 447             | 31.1       | 10    | 15   |                |           |       |       |
| 1996  | 316             | 31.6       | 5     | 24   |                |           |       |       |
| 1997  | 418             | 45.4       | 5     | 26   |                |           |       |       |
| 1998  | 350             | 26.0       | 9     | 12   |                |           |       |       |
| 1999  | 419             | 34.2       | 4     | 20   |                |           |       |       |
| 2000  | 362             | 30.1       | 6     | 9    |                |           |       |       |
| 2001  | 326             | 40.8       | 6     | 29   | 0.00           | 0.00      | 10    | 1     |
| 2002  | 387             | 45.1       | 7     | 16   | 0.00           | 0.00      | 10    | 1     |
| 2003  | 367             | 20.7       | 3     | 18   | 0.00           | 0.00      | 10    | 1     |
| 2004  | 291             | 26.8       | 10    | 29   | 0.00           | 0.00      | 10    | 1     |
| 2005  | 493             | 67.3       | 5     | 8    | 2.47           | 1.06      | 5     | 13    |
| 2006  | 398             | 49.2       | 10    | 5    | 0.02           | 0.01      | 4     | 2     |
| 2007  | 493             | 66.8       | 6     | 7    |                |           |       |       |
| 2008  | 495             | 36.5       | 5     | 24   |                |           |       |       |
| 2009  | 359             | 33.4       | 8     | 6    |                |           |       |       |

Table 8. Annual maxima of precipitation at Colstrip weather station and observed streamflow at AFL50-1

Note: Precipitation was observed during 1984/01/01-2009/12/31 and runoff 2000/08/09-2006/12/31.

# 2. Observed Daily Precipitation and Runoff at BPSFL

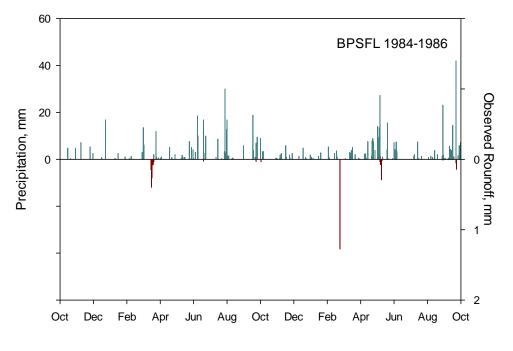



Fig. 8.1. Observed daily precipitation and runoff at BPSFL (1984–1986)

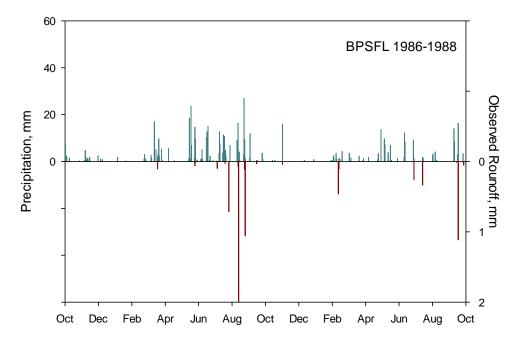
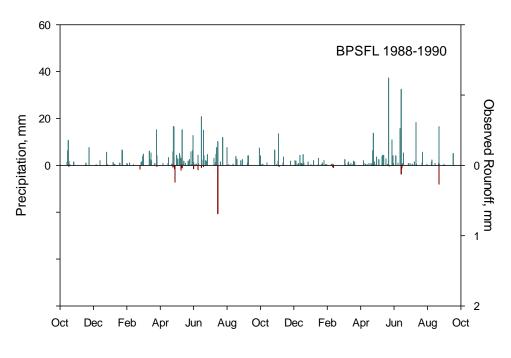
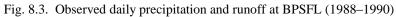





Fig. 8.2. Observed daily precipitation and runoff at BPSFL (1986–1988)





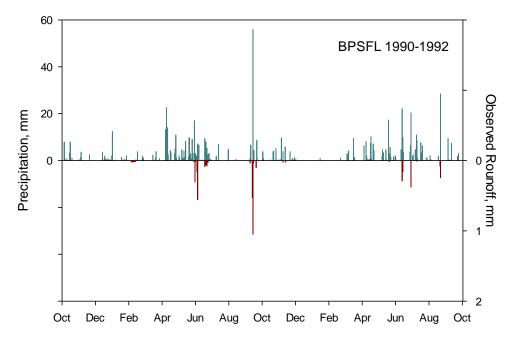
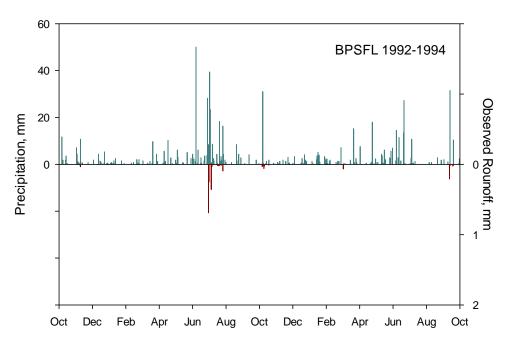
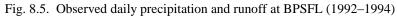





Fig. 8.4. Observed daily precipitation and runoff at BPSFL (1990–1992)





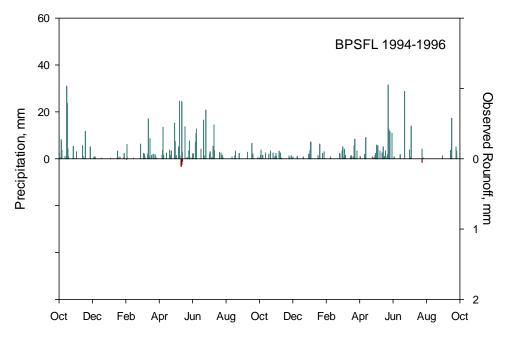
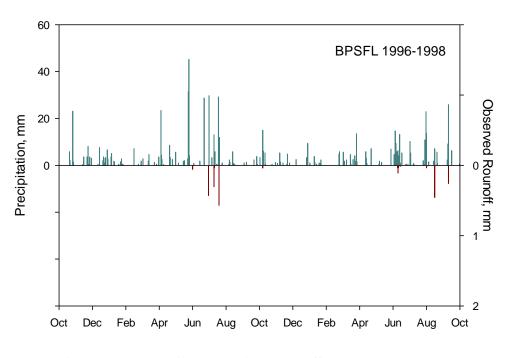
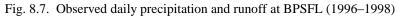





Fig. 8.6. Observed daily precipitation and runoff at BPSFL (1994–1996)





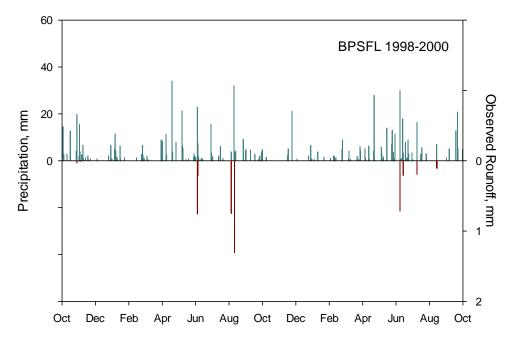



Fig. 8.8. Observed daily precipitation and runoff at BPSFL (1998–2000)

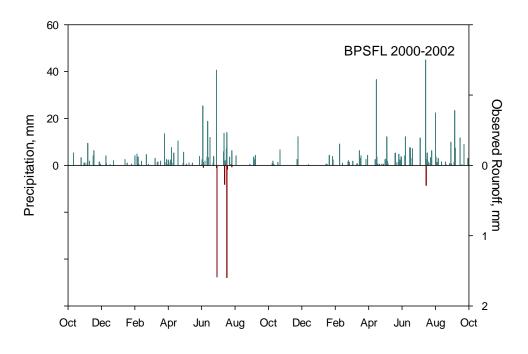



Fig. 8.9. Observed daily precipitation and runoff at BPSFL (2000-2002)

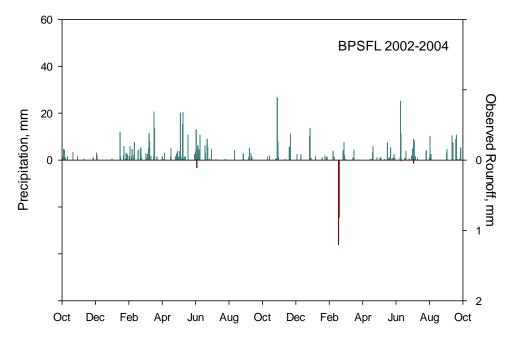



Fig. 8.10. Observed daily precipitation and runoff at BPSFL (2002-2004)

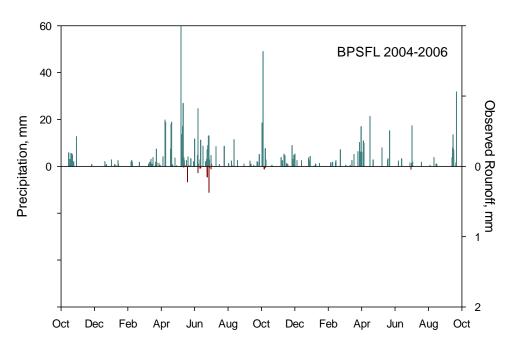



Fig. 8.11. Observed daily precipitation and runoff at BPSFL (2004–2006)

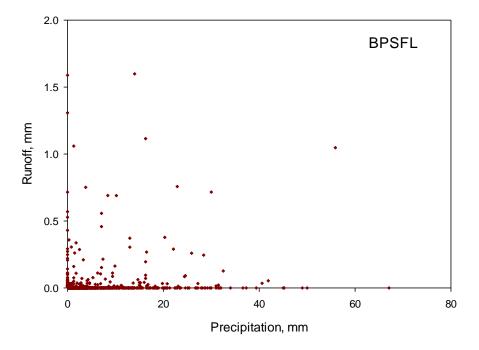
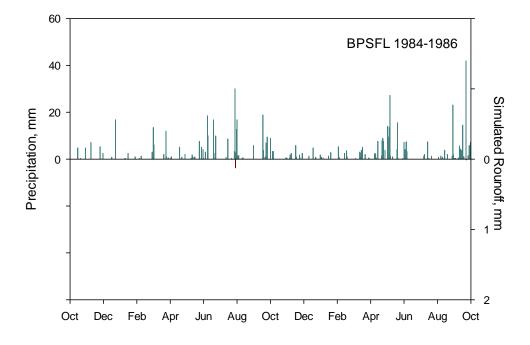




Fig. 9. Observed runoff at BPSFL and precipitation on the event day



3. Observed Daily Precipitation and Simulated Runoff for the BPSFL Watershed

Fig. 10.1. Observed daily precipitation and simulated daily runoff at BPSFL (1984–1986)

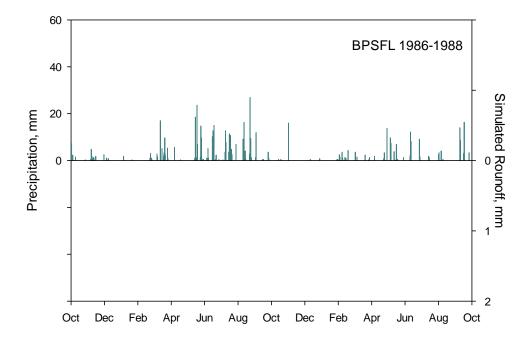



Fig. 10.2. Observed daily precipitation and simulated daily runoff at BPSFL (1986–1988)

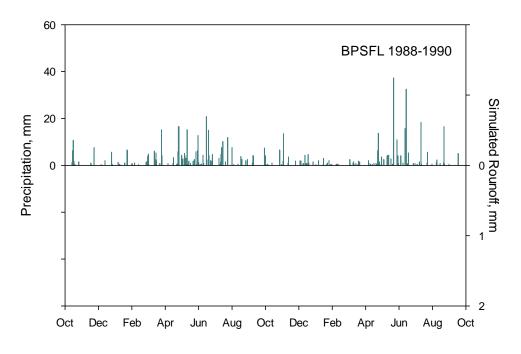



Fig. 10.3. Observed daily precipitation and simulated daily runoff at BPSFL (1988–1990)

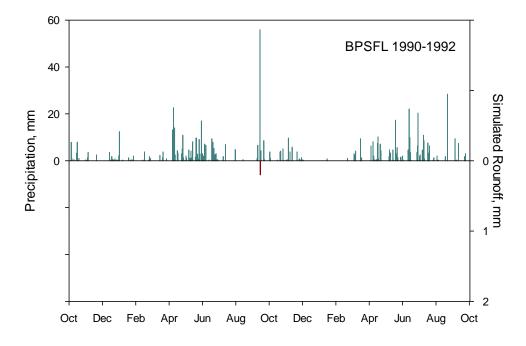



Fig. 10.4. Observed daily precipitation and simulated daily runoff at BPSFL (1990–1992)

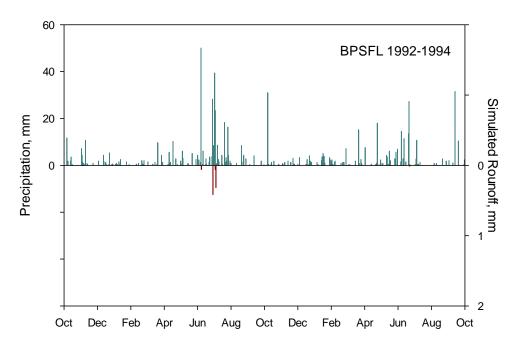



Fig. 10.5. Observed daily precipitation and simulated daily runoff at BPSFL (1992–1994)

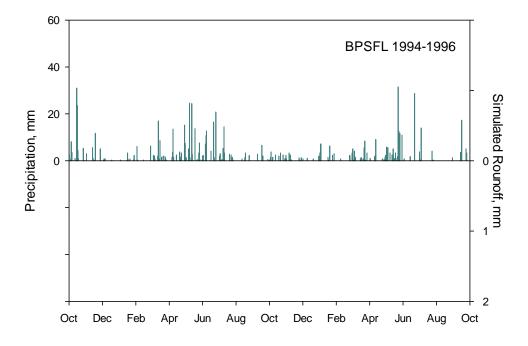



Fig. 10.6. Observed daily precipitation and simulated daily runoff at BPSFL (1994–1996)

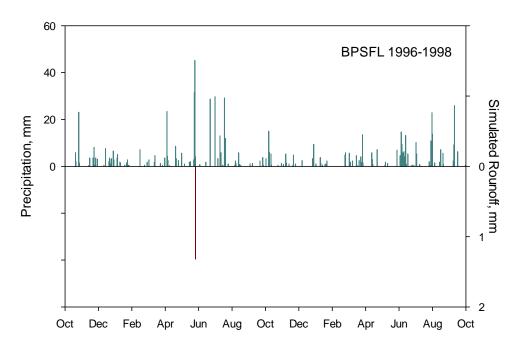



Fig. 10.7. Observed daily precipitation and simulated daily runoff at BPSFL (1996–1998)

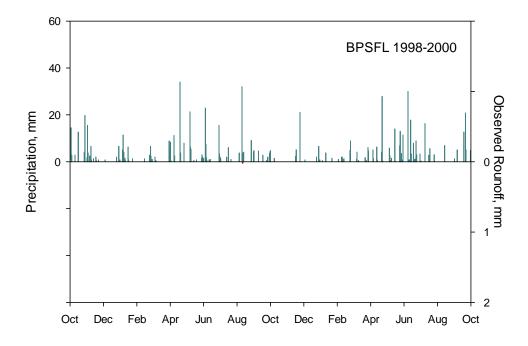



Fig. 10.8. Observed daily precipitation and simulated daily runoff at BPSFL (1998-2000)

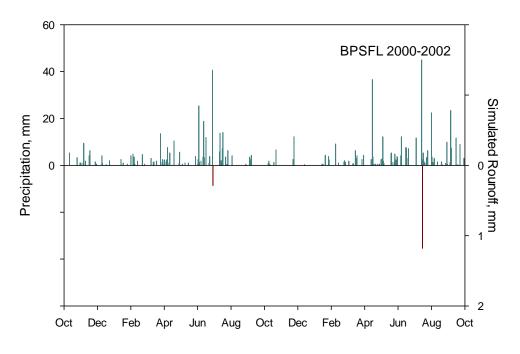



Fig. 10.9. Observed daily precipitation and simulated daily runoff at BPSFL (2000-2002)

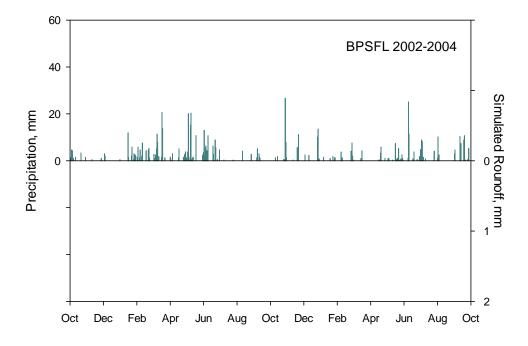



Fig. 10.10. Observed daily precipitation and simulated daily runoff at BPSFL (2002-2004)

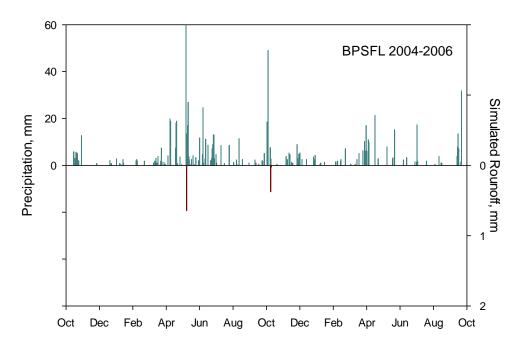



Fig. 10.11. Observed daily precipitation and simulated daily runoff at BPSFL (2004-2006)

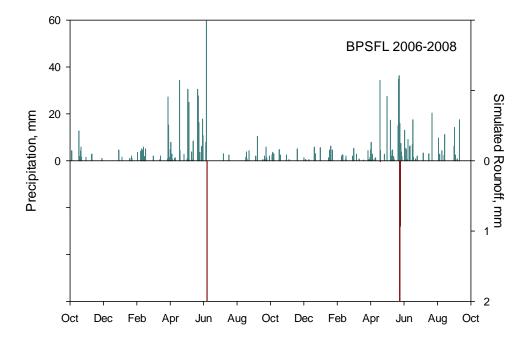



Fig. 10.12. Observed daily precipitation and simulated daily runoff at BPSFL (2006-2008)

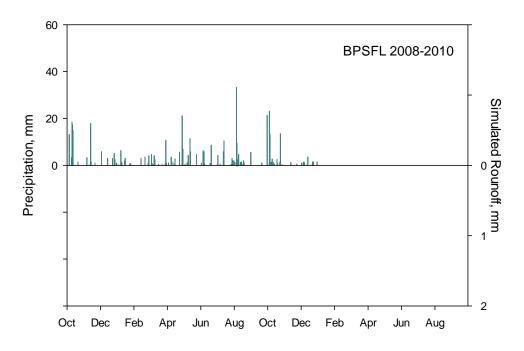



Fig. 10.13. Observed daily precipitation and simulated daily runoff at BPSFL (2008–2010)

# 4. WEPP Inputs and Simulation Results

### 4.1 BPSFL Watershed

# Watershed Summary

| Area (ha):                           | 583 (cells: 6473) |
|--------------------------------------|-------------------|
| Number of Representative Hillslopes: | 77                |
| Number of Channels:                  | 31                |
| Number of Impoundments:              | 0                 |
| Outlet Location:                     | -106.716, 45.8243 |
| Reference Point:                     | 0                 |
| Minimum Source Channel Length (m):   | 100               |
| Critical Source Area (ha):           | 10                |

#### Landuse Summary

The watershed contains the following landuse as detemined by the USGS National Land Cover Database 2001 - http://www.mrlc.gov/nlcd.php

| ID | Name                  | WEPP File         | Number<br>of Cells | Area(ha) | Percent<br>Watershed |
|----|-----------------------|-------------------|--------------------|----------|----------------------|
| 31 | Barren Land           | Good grass.rot    | 37                 | 3.33     | 0.6                  |
| 42 | Evergreen Forest      | Mature forest.rot | 664                | 59.76    | 10.3                 |
| 52 | Shrub/Scrub           | Shrubs.rot        | 1945               | 175.05   | 30.0                 |
| 71 | Grasslands/Herbaceous | Good grass.rot    | 3827               | 344.43   | 59.1                 |

#### Soils Summary

The watershed contains the following soils as determined by the NRCS Soil Survey. The data is requested directly from the NRCS soils database. Information on the NRCS Soils Data structure and how it can be accessed are found at: http://sdmdataaccess.nrcs.usda.gov/

| MuKey  | Soil Name                                                            | Number of<br>Cells | Area(ha) | Percent<br>Watershed |
|--------|----------------------------------------------------------------------|--------------------|----------|----------------------|
| 347925 | Havre, Harlake, and Glendive soils, channeled, 0 to 2 percent slopes | 9                  | 0.81     | 0.1                  |
| 347932 | Kobar silty clay loam, 2 to 8 percent slopes                         | 41                 | 3.69     | 0.6                  |
| 347933 | Kobar silty clay loam, 8 to 15 percent slopes                        | 162                | 14.58    | 2.5                  |
| 347947 | Lonna silt loam, 2 to 8 percent slopes                               | 251                | 22.59    | 3.9                  |
| 347957 | Lonna-Cambeth silt loams, 2 to 8 percent slopes                      | 634                | 57.06    | 9.8                  |
| 348028 | Yamac loam, 2 to 8 percent slopes                                    | 571                | 51.39    | 8.8                  |
| 348029 | Yamac loam, 8 to 15 percent slopes                                   | 153                | 13.77    | 2.4                  |
| 348038 | Yamac-Busby complex, 8 to 15 percent slopes                          | 433                | 38.97    | 6.7                  |
| 348039 | Yamac-Cabbart loams, 8 to 25 percent slopes                          | 141                | 12.69    | 2.2                  |
| 348040 | Yamac-Delpoint loams, 4 to 15 percent slopes                         | 503                | 45.27    | 7.8                  |
| 348042 | Birney, moist-Armells-Cabbart complex, 25 to 70 percent slopes       | 152                | 13.68    | 2.3                  |

| 348075 | Busby fine sandy loam, 2 to 8 percent slopes                             | 134  | 12.06  | 2.1  |
|--------|--------------------------------------------------------------------------|------|--------|------|
| 348079 | Busby-Twilight-Blackhall, warm, fine sandy loams, 2 to 8 percent slopes  | 262  | 23.58  | 4.0  |
| 348080 | Busby-Twilight-Blackhall, warm, fine sandy loams, 8 to 25 percent slopes | 149  | 13.41  | 2.3  |
| 348087 | Cabbart-Rock outcrop-Yawdim complex, 15 to 70 percent slopes             | 804  | 72.36  | 12.4 |
| 348088 | Cambeth silt loam, 2 to 8 percent slopes                                 | 20   | 1.8    | 0.3  |
| 348090 | Cambeth-Cabbart silt loams, 4 to 15 percent slopes                       | 5    | 0.45   | 0.1  |
| 348107 | Delpoint-Yamacall-Cabbart loams, 8 to 25 percent slopes                  | 1254 | 112.86 | 19.4 |

Number of events: 364

## **26 YEAR SIMULATION FOR WATERSHED**

# WEPP Watershed Simulation for Representative Hillslopes and Channels (watershed method, off-site assessment)

Note that return period of the events are eatimated by applying Weibull formula on annual maxima series. T = (N + 1)/m

where T is the return period, N is the number of simulation years, and m is the rank of the annual maxima event.

|                        | <b>Return Period of PRECIPITATION in Event by Event Output</b> |       |      |               |          |                     |                   |  |  |
|------------------------|----------------------------------------------------------------|-------|------|---------------|----------|---------------------|-------------------|--|--|
| Recurrence<br>Interval | Day                                                            | Month | Year | Precipitation | Runoff   | Peak                | Sediment<br>Yield |  |  |
| years                  |                                                                |       |      | (mm)          | (mm)     | (m <sup>3</sup> /s) | (t/ha)            |  |  |
| 2                      | 23                                                             | 9     | 23   | 31.8          | 0.000643 | 0.00103             | 0                 |  |  |
| 5                      | 26                                                             | 5     | 14   | 45.2          | 1.43     | 1.4                 | 0.0401            |  |  |
| 13                     | 7                                                              | 6     | 24   | 66.5          | 15.9     | 12.2                | 0.952             |  |  |
| 27                     | 8                                                              | 5     | 22   | 67.1          | 0.757    | 0.732               | 0.0173            |  |  |

|                        | <b>Return Period of RUNOFF in Event by Event Output</b> |       |      |               |        |             |                   |  |  |  |
|------------------------|---------------------------------------------------------|-------|------|---------------|--------|-------------|-------------------|--|--|--|
| Recurrence<br>Interval | Day                                                     | Month | Year | Precipitation | Runoff | Peak        | Sediment<br>Yield |  |  |  |
| years                  |                                                         |       |      | (mm)          | (mm)   | $(m^{3}/s)$ | (t/ha)            |  |  |  |
| 2                      | 24                                                      | 9     | 3    | 41.9          | 0.0166 | 0.0212      | 7.29E-6           |  |  |  |
| 5                      | 8                                                       | 5     | 22   | 67.1          | 0.757  | 0.732       | 0.0173            |  |  |  |
| 13                     | 24                                                      | 5     | 25   | 36.3          | 2.81   | 2.64        | 0.109             |  |  |  |
| 27                     | 7                                                       | 6     | 24   | 66.5          | 15.9   | 12.2        | 0.952             |  |  |  |

|                        | <b>Return Period of PEAK RUNOFF in Event by Event Output</b> |       |      |               |        |                     |                   |  |  |
|------------------------|--------------------------------------------------------------|-------|------|---------------|--------|---------------------|-------------------|--|--|
| Recurrence<br>Interval | Day                                                          | Month | Year | Precipitation | Runoff | Peak                | Sediment<br>Yield |  |  |
| years                  |                                                              |       |      | (mm)          | (mm)   | (m <sup>3</sup> /s) | (t/ha)            |  |  |
| 2                      | 24                                                           | 9     | 3    | 41.9          | 0.0166 | 0.0212              | 7.29E-6           |  |  |
| 5                      | 8                                                            | 5     | 22   | 67.1          | 0.757  | 0.732               | 0.0173            |  |  |
| 13                     | 24                                                           | 5     | 25   | 36.3          | 2.81   | 2.64                | 0.109             |  |  |
| 27                     | 7                                                            | 6     | 24   | 66.5          | 15.9   | 12.2                | 0.952             |  |  |

|                        | <b>Return Period of SEDIMENT YIELD in Event by Event Output</b> |       |      |               |        |           |                   |  |  |
|------------------------|-----------------------------------------------------------------|-------|------|---------------|--------|-----------|-------------------|--|--|
| Recurrence<br>Interval | Day                                                             | Month | Year | Precipitation | Runoff | Peak      | Sediment<br>Yield |  |  |
| years                  |                                                                 |       |      | (mm)          | (mm)   | $(m^3/s)$ | (t/ha)            |  |  |
| 2                      | 24                                                              | 9     | 3    | 41.9          | 0.0166 | 0.0212    | 7.29E-6           |  |  |
| 5                      | 8                                                               | 5     | 22   | 67.1          | 0.757  | 0.732     | 0.0173            |  |  |
| 13                     | 24                                                              | 5     | 25   | 36.3          | 2.81   | 2.64      | 0.109             |  |  |
| 27                     | 7                                                               | 6     | 24   | 66.5          | 15.9   | 12.2      | 0.952             |  |  |

# 4.2 BRTFL Watershed

#### Watershed Summary

| Area (ha):                           | 994 (cells: 11045) |
|--------------------------------------|--------------------|
| Number of Representative Hillslopes: | 113                |
| Number of Channels:                  | 47                 |
| Number of Impoundments:              | 0                  |
| Outlet Location:                     | -106.6918, 45.8141 |
| Reference Point:                     | 0                  |
| Minimum Source Channel Length (m):   | 100                |
| Critical Source Area (ha):           | 10                 |

### Landuse Summary

The watershed contains the following landuse as detemined by the USGS National Land Cover Database 2001 - http://www.mrlc.gov/nlcd.php

| ID | Name                  | WEPP File         | Number<br>of Cells | Area(ha) | Percent<br>Watershed |
|----|-----------------------|-------------------|--------------------|----------|----------------------|
| 31 | Barren Land           | Good grass.rot    | 331                | 29.79    | 3.0                  |
| 42 | Evergreen Forest      | Mature forest.rot | 1010               | 90.9     | 9.1                  |
| 52 | Shrub/Scrub           | Shrubs.rot        | 2900               | 261      | 26.3                 |
| 71 | Grasslands/Herbaceous | Good grass.rot    | 6804               | 612.36   | 61.6                 |

### **Soils Summary**

The watershed contains the following soils as determined by the NRCS Soil Survey. The data is requested directly from the NRCS soils database. Information on the NRCS Soils Data structure and how it can be accessed are found at: http://sdmdataaccess.nrcs.usda.gov/

|        | Soil Name                                                            | Number of<br>Cells | Area(ha) | Percent<br>Watershed |
|--------|----------------------------------------------------------------------|--------------------|----------|----------------------|
| 347925 | Havre, Harlake, and Glendive soils, channeled, 0 to 2 percent slopes | 139                | 12.51    | 1.3                  |
| 347932 | Kobar silty clay loam, 2 to 8 percent slopes                         | 41                 | 3.69     | 0.4                  |
| 347933 | Kobar silty clay loam, 8 to 15 percent slopes                        | 162                | 14.58    | 1.5                  |
| 347947 | Lonna silt loam, 2 to 8 percent slopes                               | 251                | 22.59    | 2.3                  |
| 347957 | Lonna-Cambeth silt loams, 2 to 8 percent slopes                      | 634                | 57.06    | 5.7                  |
| 348010 | Ustic Torrifluvents, 0 to 2 percent slopes, frequently flooded       | 159                | 14.31    | 1.4                  |
| 348028 | Yamac loam, 2 to 8 percent slopes                                    | 1046               | 94.14    | 9.5                  |
| 348029 | Yamac loam, 8 to 15 percent slopes                                   | 153                | 13.77    | 1.4                  |
| 348037 | Yamacall-Busby complex, 2 to 8 percent slopes                        | 1071               | 96.39    | 9.7                  |
| 348038 | Yamac-Busby complex, 8 to 15 percent slopes                          | 974                | 87.66    | 8.8                  |
| 348039 | Yamac-Cabbart loams, 8 to 25 percent slopes                          | 141                | 12.69    | 1.3                  |

| 348040 | Yamac-Delpoint loams, 4 to 15 percent slopes                             | 503  | 45.27  | 4.6  |
|--------|--------------------------------------------------------------------------|------|--------|------|
| 348042 | Birney, moist-Armells-Cabbart complex, 25 to 70 percent slopes           | 632  | 56.88  | 5.7  |
| 348075 | Busby fine sandy loam, 2 to 8 percent slopes                             | 838  | 75.42  | 7.6  |
| 348078 | Busby-Rock outcrop complex, 8 to 15 percent slopes                       | 111  | 9.99   | 1.0  |
| 348079 | Busby-Twilight-Blackhall, warm, fine sandy loams, 2 to 8 percent slopes  | 292  | 26.28  | 2.6  |
| 348080 | Busby-Twilight-Blackhall, warm, fine sandy loams, 8 to 25 percent slopes | 939  | 84.51  | 8.5  |
| 348087 | Cabbart-Rock outcrop-Yawdim complex, 15 to 70 percent slopes             | 804  | 72.36  | 7.3  |
| 348088 | Cambeth silt loam, 2 to 8 percent slopes                                 | 20   | 1.8    | 0.2  |
| 348090 | Cambeth-Cabbart silt loams, 4 to 15 percent slopes                       | 5    | 0.45   | 0.0  |
| 348103 | Armells-Cabbart complex, 25 to 70 percent slopes                         | 56   | 5.04   | 0.5  |
| 348107 | Delpoint-Yamacall-Cabbart loams, 8 to 25 percent slopes                  | 1254 | 112.86 | 11.4 |
| 348111 | Delpoint, moist-Delpoint-Cabbart loams, 25 to 70 percent slopes          | 795  | 71.55  | 7.2  |

#### **26 YEAR SIMULATION FOR WATERSHED**

# WEPP Watershed Simulation for Representative Hillslopes and Channels (watershed method, off-site assessment)

Note that return period of the events are eatimated by applying Weibull formula on annual maxima series. T=(N+1)/m

where T is the return period, N is the number of simulation years, and m is the rank of the annual maxima event.

|                        | <b>Return Period of PRECIPITATION in Event by Event Output</b> |       |      |               |         |                     |                   |  |  |
|------------------------|----------------------------------------------------------------|-------|------|---------------|---------|---------------------|-------------------|--|--|
| Recurrence<br>Interval | Day                                                            | Month | Year | Precipitation | Runoff  | Peak                | Sediment<br>Yield |  |  |
| years                  |                                                                |       |      | (mm)          | (mm)    | (m <sup>3</sup> /s) | (t/ha)            |  |  |
| 2                      | 23                                                             | 9     | 23   | 31.8          | 0.00503 | 0.00956             | 1.38E-6           |  |  |
| 5                      | 26                                                             | 5     | 14   | 45.2          | 0.877   | 1.25                | 0.0588            |  |  |
| 13                     | 7                                                              | 6     | 24   | 66.5          | 12.2    | 14.2                | 1.24              |  |  |
| 27                     | 8                                                              | 5     | 22   | 67.1          | 0.392   | 0.565               | 0.0222            |  |  |

|                        | <b>Return Period of RUNOFF in Event by Event Output</b> |       |      |               |        |                     |                   |  |  |
|------------------------|---------------------------------------------------------|-------|------|---------------|--------|---------------------|-------------------|--|--|
| Recurrence<br>Interval | Day                                                     | Month | Year | Precipitation | Runoff | Peak                | Sediment<br>Yield |  |  |
| years                  |                                                         |       |      | (mm)          | (mm)   | (m <sup>3</sup> /s) | (t/ha)            |  |  |
| 2                      | 24                                                      | 5     | 7    | 37.3          | 0.0102 | 0.0185              | 7.72E-6           |  |  |
| 5                      | 8                                                       | 5     | 22   | 67.1          | 0.392  | 0.565               | 0.0222            |  |  |
| 13                     | 24                                                      | 5     | 25   | 36.3          | 1.57   | 2.22                | 0.125             |  |  |
| 27                     | 7                                                       | 6     | 24   | 66.5          | 12.2   | 14.2                | 1.24              |  |  |

|                        | <b>Return Period of PEAK RUNOFF in Event by Event Output</b> |       |      |               |        |                     |                   |  |  |
|------------------------|--------------------------------------------------------------|-------|------|---------------|--------|---------------------|-------------------|--|--|
| Recurrence<br>Interval | Day                                                          | Month | Year | Precipitation | Runoff | Peak                | Sediment<br>Yield |  |  |
| years                  |                                                              |       |      | (mm)          | (mm)   | (m <sup>3</sup> /s) | (t/ha)            |  |  |
| 2                      | 24                                                           | 5     | 7    | 37.3          | 0.0102 | 0.0185              | 7.72E-6           |  |  |
| 5                      | 8                                                            | 5     | 22   | 67.1          | 0.392  | 0.565               | 0.0222            |  |  |
| 13                     | 24                                                           | 5     | 25   | 36.3          | 1.57   | 2.22                | 0.125             |  |  |
| 27                     | 7                                                            | 6     | 24   | 66.5          | 12.2   | 14.2                | 1.24              |  |  |

|                        | <b>Return Period of SEDIMENT YIELD in Event by Event Output</b> |       |      |               |        |             |                   |  |  |
|------------------------|-----------------------------------------------------------------|-------|------|---------------|--------|-------------|-------------------|--|--|
| Recurrence<br>Interval | Day                                                             | Month | Year | Precipitation | Runoff | Peak        | Sediment<br>Yield |  |  |
| years                  |                                                                 |       |      | (mm)          | (mm)   | $(m^{3}/s)$ | (t/ha)            |  |  |
| 2                      | 24                                                              | 9     | 3    | 41.9          | 0.0133 | 0.0238      | 1.94E-5           |  |  |
| 5                      | 8                                                               | 5     | 22   | 67.1          | 0.392  | 0.565       | 0.0222            |  |  |
| 13                     | 24                                                              | 5     | 25   | 36.3          | 1.57   | 2.22        | 0.125             |  |  |
| 27                     | 7                                                               | 6     | 24   | 66.5          | 12.2   | 14.2        | 1.24              |  |  |

## 4.3 BLFFL Watershed

#### Watershed Summary

| Area (ha):                           | 761 (cells: 8451) |
|--------------------------------------|-------------------|
| Number of Representative Hillslopes: | 76                |
| Number of Channels:                  | 31                |
| Number of Impoundments:              | 0                 |
| Outlet Location:                     | -106.674, 45.8013 |
| Reference Point:                     | 0                 |
| Minimum Source Channel Length (m):   | 100               |
| Critical Source Area (ha):           | 10                |

#### Landuse Summary

The watershed contains the following landuse as detemined by the USGS National Land Cover Database 2001 – http://www.mrlc.gov/nlcd.php

| ID | Name                  | WEPP File         | Number<br>of Cells | Area(ha) | Percent<br>Watershed |
|----|-----------------------|-------------------|--------------------|----------|----------------------|
| 31 | Barren Land           | Good grass.rot    | 1193               | 107.37   | 14.1                 |
| 42 | Evergreen Forest      | Mature forest.rot | 1890               | 170.1    | 22.4                 |
| 52 | Shrub/Scrub           | Shrubs.rot        | 3321               | 298.89   | 39.3                 |
| 71 | Grasslands/Herbaceous | Good grass.rot    | 2042               | 183.78   | 24.2                 |
| 90 | Woody Wetlands        | Good grass.rot    | 5                  | 0.45     | 0.1                  |

#### **Soils Summary**

The watershed contains the following soils as determined by the NRCS Soil Survey. The data is requested directly from the NRCS soils database. Information on the NRCS Soils Data structure and how it can be accessed are found at: http://sdmdataaccess.nrcs.usda.gov/

| MuKey  | Soil Name                                                      | Number of<br>Cells | Area(ha) | Percent<br>Watershed |
|--------|----------------------------------------------------------------|--------------------|----------|----------------------|
| 347947 | Lonna silt loam, 2 to 8 percent slopes                         | 91                 | 8.19     | 1.1                  |
| 347948 | Lonna silt loam, 8 to 15 percent slopes                        | 263                | 23.67    | 3.1                  |
| 347997 | Birney-Cabbart complex, moist, 25 to 70 percent slopes         | 182                | 16.38    | 2.2                  |
| 348008 | Birney-Cooers-Kirby complex, 2 to 15 percent slopes            | 120                | 10.8     | 1.4                  |
| 348028 | Yamac loam, 2 to 8 percent slopes                              | 366                | 32.94    | 4.3                  |
| 348029 | Yamac loam, 8 to 15 percent slopes                             | 362                | 32.58    | 4.3                  |
| 348033 | Yamac-Birney complex, 2 to 8 percent slopes                    | 400                | 36       | 4.7                  |
| 348036 | Yamac-Birney-Cabbart complex, 15 to 25 percent slopes          | 593                | 53.37    | 7.0                  |
| 348040 | Yamac-Delpoint loams, 4 to 15 percent slopes                   | 452                | 40.68    | 5.3                  |
| 348042 | Birney, moist-Armells-Cabbart complex, 25 to 70 percent slopes | 1901               | 171.09   | 22.5                 |
| 348075 | Busby fine sandy loam, 2 to 8 percent slopes                   | 31                 | 2.79     | 0.4                  |
| 348076 | Busby fine sandy loam, 8 to 15 percent slopes                  | 753                | 67.77    | 8.9                  |

| 348078 | Busby-Rock outcrop complex, 8 to 15 percent slopes                       | 565  | 50.85  | 6.7  |
|--------|--------------------------------------------------------------------------|------|--------|------|
| 348080 | Busby-Twilight-Blackhall, warm, fine sandy loams, 8 to 25 percent slopes | 392  | 35.28  | 4.6  |
| 348087 | Cabbart-Rock outcrop-Yawdim complex, 15 to 70 percent slopes             | 10   | 0.9    | 0.1  |
| 348090 | Cambeth-Cabbart silt loams, 4 to 15 percent slopes                       | 188  | 16.92  | 2.2  |
| 348136 | Denied access                                                            | 1782 | 160.38 | 21.1 |
|        |                                                                          |      |        |      |

# **26 YEAR SIMULATION FOR WATERSHED**

# WEPP Watershed Simulation for Representative Hillslopes and Channels (watershed method, off-site assessment)

Note that return period of the events are eatimated by applying Weibull formula on annual maxima series. T = (N + 1)/m

where T is the return period, N is the number of simulation years, and m is the rank of the annual maxima event.

| <b>Return Period of PRECIPITATION in Event by Event Output</b> |     |       |      |               |         |                     |                   |  |  |
|----------------------------------------------------------------|-----|-------|------|---------------|---------|---------------------|-------------------|--|--|
| Recurrence<br>Interval                                         | Day | Month | Year | Precipitation | Runoff  | Peak                | Sediment<br>Yield |  |  |
| years                                                          |     |       |      | (mm)          | (mm)    | (m <sup>3</sup> /s) | (t/ha)            |  |  |
| 2                                                              | 23  | 9     | 23   | 31.8          | 1.93E-5 | 5.0E-5              | 0                 |  |  |
| 5                                                              | 26  | 5     | 14   | 45.2          | 0.0161  | 0.0245              | 5.46E-5           |  |  |
| 13                                                             | 7   | 6     | 24   | 66.5          | 0.342   | 0.422               | 0.0228            |  |  |
| 27                                                             | 8   | 5     | 22   | 67.1          | 0.0677  | 0.0932              | 0.000244          |  |  |

| <b>Return Period of RUNOFF in Event by Event Output</b> |     |       |      |               |         |                     |                   |  |  |
|---------------------------------------------------------|-----|-------|------|---------------|---------|---------------------|-------------------|--|--|
| Recurrence<br>Interval                                  | Day | Month | Year | Precipitation | Runoff  | Peak                | Sediment<br>Yield |  |  |
| years                                                   |     |       |      | (mm)          | (mm)    | (m <sup>3</sup> /s) | (t/ha)            |  |  |
| 2                                                       | 23  | 6     | 13   | 28.7          | 9.93E-5 | 0.00021             | 0                 |  |  |
| 5                                                       | 8   | 6     | 10   | 50            | 0.0325  | 0.047               | 0.000117          |  |  |
| 13                                                      | 8   | 5     | 22   | 67.1          | 0.0677  | 0.0932              | 0.000244          |  |  |
| 27                                                      | 7   | 6     | 24   | 66.5          | 0.342   | 0.422               | 0.0228            |  |  |

| <b>Return Period of PEAK RUNOFF in Event by Event Output</b> |     |       |      |               |         |           |                   |  |
|--------------------------------------------------------------|-----|-------|------|---------------|---------|-----------|-------------------|--|
| Recurrence<br>Interval                                       | Day | Month | Year | Precipitation | Runoff  | Peak      | Sediment<br>Yield |  |
| years                                                        |     |       |      | (mm)          | (mm)    | $(m^3/s)$ | (t/ha)            |  |
| 2                                                            | 23  | 6     | 13   | 28.7          | 9.93E-5 | 0.00021   | 0                 |  |
| 5                                                            | 8   | 6     | 10   | 50            | 0.0325  | 0.047     | 0.000117          |  |
| 13                                                           | 8   | 5     | 22   | 67.1          | 0.0677  | 0.0932    | 0.000244          |  |
| 27                                                           | 7   | 6     | 24   | 66.5          | 0.342   | 0.422     | 0.0228            |  |

| <b>Return Period of SEDIMENT YIELD in Event by Event Output</b> |     |       |      |               |        |           |                   |  |  |
|-----------------------------------------------------------------|-----|-------|------|---------------|--------|-----------|-------------------|--|--|
| Recurrence<br>Interval                                          | Day | Month | Year | Precipitation | Runoff | Peak      | Sediment<br>Yield |  |  |
| years                                                           |     |       |      | (mm)          | (mm)   | $(m^3/s)$ | (t/ha)            |  |  |
| 2                                                               |     |       |      | 0             | 0      | 0         | 0                 |  |  |
| 5                                                               | 8   | 6     | 10   | 50            | 0.0325 | 0.047     | 0.000117          |  |  |
| 13                                                              | 8   | 5     | 22   | 67.1          | 0.0677 | 0.0932    | 0.000244          |  |  |
| 27                                                              | 7   | 6     | 24   | 66.5          | 0.342  | 0.422     | 0.0228            |  |  |

### 4.4 BBBFL Watershed

# Watershed Summary

| Area (ha):                           | 800 (cells: 8893)  |
|--------------------------------------|--------------------|
| Number of Representative Hillslopes: | 78                 |
| Number of Channels:                  | 31                 |
| Number of Impoundments:              | 0                  |
| Outlet Location:                     | -106.6421, 45.7959 |
| Reference Point:                     | 0                  |
| Minimum Source Channel Length (m):   | 100                |
| Critical Source Area (ha):           | 10                 |

### Landuse Summary

The watershed contains the following landuse as detemined by the USGS National Land Cover Database 2001 – http://www.mrlc.gov/nlcd.php

| ID | Name                         | WEPP File                                | Number<br>of Cells | Area(ha) | Percent<br>Watershed |
|----|------------------------------|------------------------------------------|--------------------|----------|----------------------|
| 31 | Barren Land                  | Good grass.rot                           | 784                | 70.56    | 8.8                  |
| 42 | Evergreen Forest             | Mature forest.rot                        | 2888               | 259.92   | 32.5                 |
| 52 | Shrub/Scrub                  | Shrubs.rot                               | 2542               | 228.78   | 28.6                 |
| 71 | Grasslands/Herbaceous        | Good grass.rot                           | 2609               | 234.81   | 29.3                 |
| 82 | Cultivated Crops             | GeoWEPP/corn,soybean-fall mulch till.rot | 7                  | 0.63     | 0.1                  |
| 90 | Woody Wetlands               | Good grass.rot                           | 13                 | 1.17     | 0.1                  |
| 95 | Emergent Herbaceous Wetlands | Good grass.rot                           | 50                 | 4.5      | 0.6                  |

#### **Soils Summary**

The watershed contains the following soils as determined by the NRCS Soil Survey. The data is requested directly from the NRCS soils database. Information on the NRCS Soils Data structure and how it can be accessed are found at: http://sdmdataaccess.nrcs.usda.gov/

| MuKey  | Soil Name                                                          | Number of<br>Cells | Area(ha) | Percent<br>Watershed |
|--------|--------------------------------------------------------------------|--------------------|----------|----------------------|
| 347986 | Birney channery loam, 15 to 25 percent slopes                      | 207                | 18.63    | 2.3                  |
| 347997 | Birney-Cabbart complex, moist, 25 to 70 percent slopes             | 387                | 34.83    | 4.4                  |
| 348008 | Birney-Cooers-Kirby complex, 2 to 15 percent slopes                | 851                | 76.59    | 9.6                  |
| 348028 | Yamac loam, 2 to 8 percent slopes                                  | 979                | 88.11    | 11.0                 |
| 348029 | Yamac loam, 8 to 15 percent slopes                                 | 24                 | 2.16     | 0.3                  |
| 348036 | Yamac-Birney-Cabbart complex, 15 to 25 percent slopes              | 89                 | 8.01     | 1.0                  |
| 348037 | Yamacall-Busby complex, 2 to 8 percent slopes                      | 12                 | 1.08     | 0.1                  |
| 348039 | Yamac-Cabbart loams, 8 to 25 percent slopes                        | 403                | 36.27    | 4.5                  |
| 348042 | Birney, moist-Armells-Cabbart complex, 25 to 70 percent slopes     | 907                | 81.63    | 10.2                 |
| 348051 | Birney, moist-Birney-Kirby channery loams, 15 to 25 percent slopes | 101                | 9.09     | 1.1                  |
| 348075 | Busby fine sandy loam, 2 to 8 percent slopes                       | 37                 | 3.33     | 0.4                  |
| 348076 | Busby fine sandy loam, 8 to 15 percent slopes                      | 110                | 9.9      | 1.2                  |
| 348086 | Cabbart-Armells-Rock outcrop complex, 25 to 70 percent slopes      | 680                | 61.2     | 7.6                  |
| 348097 | Cooers loam, 2 to 8 percent slopes                                 | 107                | 9.63     | 1.2                  |
| 348103 | Armells-Cabbart complex, 25 to 70 percent slopes                   | 21                 | 1.89     | 0.2                  |
| 348114 | Armells-Delpoint-Cabbart complex, 25 to 70 percent slopes          | 1314               | 118.26   | 14.8                 |

Number of events: 165

#### **26 YEAR SIMULATION FOR WATERSHED**

# WEPP Watershed Simulation for Representative Hillslopes and Channels (watershed method, off-site assessment)

Note that return period of the events are eatimated by applying Weibull formula on annual maxima series. T = (N + 1)/mwhere T is the return period. N is the number of simulation years, and m is the renk of the annual maxima ave

where T is the return period, N is the number of simulation years, and m is the rank of the annual maxima event.

|                        | <b>Return Period of PRECIPITATION in Event by Event Output</b> |       |      |               |        |           |                   |  |  |  |
|------------------------|----------------------------------------------------------------|-------|------|---------------|--------|-----------|-------------------|--|--|--|
| Recurrence<br>Interval | Day                                                            | Month | Year | Precipitation | Runoff | Peak      | Sediment<br>Yield |  |  |  |
| years                  |                                                                |       |      | (mm)          | (mm)   | $(m^3/s)$ | (t/ha)            |  |  |  |
| 2                      | 23                                                             | 9     | 23   | 31.8          | 3.8E-5 | 9.0E-5    | 1.31E-7           |  |  |  |
| 5                      | 26                                                             | 5     | 14   | 45.2          | 0.0271 | 0.043     | 0.00176           |  |  |  |
| 13                     | 7                                                              | 6     | 24   | 66.5          | 0.641  | 0.825     | 0.0687            |  |  |  |
| 27                     | 8                                                              | 5     | 22   | 67.1          | 0.0872 | 0.128     | 0.00605           |  |  |  |

| <b>Return Period of RUNOFF in Event by Event Output</b> |     |       |      |               |          |                     |                   |  |  |
|---------------------------------------------------------|-----|-------|------|---------------|----------|---------------------|-------------------|--|--|
| Recurrence<br>Interval                                  | Day | Month | Year | Precipitation | Runoff   | Peak                | Sediment<br>Yield |  |  |
| years                                                   |     |       |      | (mm)          | (mm)     | (m <sup>3</sup> /s) | (t/ha)            |  |  |
| 2                                                       | 8   | 6     | 1    | 20.3          | 0.000343 | 0.00071             | 0                 |  |  |
| 5                                                       | 16  | 7     | 19   | 45            | 0.0591   | 0.089               | 0.00538           |  |  |
| 13                                                      | 8   | 5     | 22   | 67.1          | 0.0872   | 0.128               | 0.00605           |  |  |
| 27                                                      | 7   | 6     | 24   | 66.5          | 0.641    | 0.825               | 0.0687            |  |  |

| <b>Return Period of PEAK RUNOFF in Event by Event Output</b> |     |       |      |               |          |                     |                   |  |  |
|--------------------------------------------------------------|-----|-------|------|---------------|----------|---------------------|-------------------|--|--|
| Recurrence<br>Interval                                       | Day | Month | Year | Precipitation | Runoff   | Peak                | Sediment<br>Yield |  |  |
| years                                                        |     |       |      | (mm)          | (mm)     | (m <sup>3</sup> /s) | (t/ha)            |  |  |
| 2                                                            | 8   | 6     | 1    | 20.3          | 0.000343 | 0.00071             | 0                 |  |  |
| 5                                                            | 16  | 7     | 19   | 45            | 0.0591   | 0.089               | 0.00538           |  |  |
| 13                                                           | 8   | 5     | 22   | 67.1          | 0.0872   | 0.128               | 0.00605           |  |  |
| 27                                                           | 7   | 6     | 24   | 66.5          | 0.641    | 0.825               | 0.0687            |  |  |

| <b>Return Period of SEDIMENT YIELD in Event by Event Output</b> |     |       |      |               |          |                     |                   |  |  |  |
|-----------------------------------------------------------------|-----|-------|------|---------------|----------|---------------------|-------------------|--|--|--|
| Recurrence<br>Interval                                          | Day | Month | Year | Precipitation | Runoff   | Peak                | Sediment<br>Yield |  |  |  |
| years                                                           |     |       |      | (mm)          | (mm)     | (m <sup>3</sup> /s) | (t/ha)            |  |  |  |
| 2                                                               | 20  | 4     | 16   | 34            | 0.000176 | 0.00039             | 1.18E-6           |  |  |  |
| 5                                                               | 15  | 9     | 8    | 55.9          | 0.0689   | 0.103               | 0.00509           |  |  |  |
| 13                                                              | 29  | 6     | 18   | 40.6          | 0.0729   | 0.108               | 0.0101            |  |  |  |
| 27                                                              | 7   | 6     | 24   | 66.5          | 0.641    | 0.825               | 0.0687            |  |  |  |

## 4.5 AFL50-1 Watershed

#### Watershed Summary

| Area (ha):                           | 167 (cells: 1853)  |
|--------------------------------------|--------------------|
| Number of Representative Hillslopes: | 42                 |
| Number of Channels:                  | 19                 |
| Number of Impoundments:              | 0                  |
| Outlet Location:                     | -106.6022, 45.8362 |
| Reference Point:                     | 0                  |
| Minimum Source Channel Length (m):   | 60                 |
| Critical Source Area (ha):           | 4                  |

#### Landuse Summary

The watershed contains the following landuse as detemined by the USGS National Land Cover Database 2001 - http://www.mrlc.gov/nlcd.php

| ID | Name                  | WEPP File         | Number<br>of Cells | Area(ha) | Percent<br>Watershed |
|----|-----------------------|-------------------|--------------------|----------|----------------------|
| 31 | Barren Land           | Good grass.rot    | 4                  | 0.36     | 0.2                  |
| 42 | Evergreen Forest      | Mature forest.rot | 209                | 18.81    | 11.3                 |
| 52 | Shrub/Scrub           | Shrubs.rot        | 645                | 58.05    | 34.8                 |
| 71 | Grasslands/Herbaceous | Good grass.rot    | 995                | 89.55    | 53.7                 |

#### **Soils Summary**

The watershed contains the following soils as determined by the NRCS Soil Survey. The data is requested directly from the NRCS soils database. Information on the NRCS Soils Data structure and how it can be accessed are found at: http://sdmdataaccess.nrcs.usda.gov/

| MuKey  | Soil Name                                                      | Number of<br>Cells | Area(ha) | Percent<br>Watershed |
|--------|----------------------------------------------------------------|--------------------|----------|----------------------|
| 347929 | Kirby-Cabbart-Rock outcrop complex, 25 to 70 percent slopes    | 820                | 73.8     | 44.3                 |
| 347932 | Kobar silty clay loam, 2 to 8 percent slopes                   | 22                 | 1.98     | 1.2                  |
| 348028 | Yamac loam, 2 to 8 percent slopes                              | 54                 | 4.86     | 2.9                  |
| 348037 | Yamacall-Busby complex, 2 to 8 percent slopes                  | 16                 | 1.44     | 0.9                  |
| 348038 | Yamac-Busby complex, 8 to 15 percent slopes                    | 692                | 62.28    | 37.3                 |
| 348042 | Birney, moist-Armells-Cabbart complex, 25 to 70 percent slopes | 128                | 11.52    | 6.9                  |
| 348078 | Busby-Rock outcrop complex, 8 to 15 percent slopes             | 40                 | 3.6      | 2.2                  |
| 348098 | Cooers-Birney complex, 2 to 8 percent slopes                   | 81                 | 7.29     | 4.4                  |

Number of events: 88

## **26 YEAR SIMULATION FOR WATERSHED**

# WEPP Watershed Simulation for Representative Hillslopes and Channels (watershed method, off-site assessment)

Note that return period of the events are eatimated by applying Weibull formula on annual maxima series. T=(N+1)/m

where T is the return period, N is the number of simulation years, and m is the rank of the annual maxima event.

| <b>Return Period of PRECIPITATION in Event by Event Output</b> |     |       |      |               |        |                     |                   |  |  |  |
|----------------------------------------------------------------|-----|-------|------|---------------|--------|---------------------|-------------------|--|--|--|
| Recurrence<br>Interval                                         | Dav | Month | Year | Precipitation | Runoff | Peak                | Sediment<br>Yield |  |  |  |
| (yr)                                                           |     |       |      | (mm)          | (mm)   | (m <sup>3</sup> /s) | (t/ha)            |  |  |  |
| 2                                                              | 23  | 9     | 23   | 31.8          | 0.0133 | 0.00981             | 0.00012           |  |  |  |
| 5                                                              | 26  | 5     | 14   | 45.2          | 1.11   | 0.529               | 0.121             |  |  |  |
| 13                                                             | 7   | 6     | 24   | 66.5          | 8.97   | 3.38                | 2.41              |  |  |  |
| 27                                                             | 8   | 5     | 22   | 67.1          | 0.127  | 0.0765              | 0.00207           |  |  |  |

| <b>Return Period of RUNOFF in Event by Event Output</b> |     |       |      |               |        |             |                   |  |  |
|---------------------------------------------------------|-----|-------|------|---------------|--------|-------------|-------------------|--|--|
| Recurrence<br>Interval                                  | Day | Month | Year | Precipitation | Runoff | Peak        | Sediment<br>Yield |  |  |
| years                                                   |     |       |      | (mm)          | (mm)   | $(m^{3}/s)$ | (t/ha)            |  |  |
| 2                                                       | 24  | 5     | 25   | 36.3          | 0.06   | 0.0386      | 0.000711          |  |  |
| 5                                                       | 26  | 5     | 14   | 45.2          | 1.11   | 0.529       | 0.121             |  |  |
| 13                                                      | 16  | 7     | 19   | 45            | 2.67   | 1.26        | 0.515             |  |  |
| 27                                                      | 7   | 6     | 24   | 66.5          | 8.97   | 3.38        | 2.41              |  |  |

|                        | Return Period of PEAK RUNOFF in Event-by-Event Output |       |      |               |        |                     |                   |  |  |  |
|------------------------|-------------------------------------------------------|-------|------|---------------|--------|---------------------|-------------------|--|--|--|
| Recurrence<br>Interval | Day                                                   | Month | Year | Precipitation | Runoff | Peak                | Sediment<br>Yield |  |  |  |
| (yr)                   |                                                       |       |      | (mm)          | (mm)   | (m <sup>3</sup> /s) | (t/ha)            |  |  |  |
| 2                      | 24                                                    | 5     | 25   | 36.3          | 0.06   | 0.0386              | 0.000711          |  |  |  |
| 5                      | 26                                                    | 5     | 14   | 45.2          | 1.11   | 0.529               | 0.121             |  |  |  |
| 13                     | 16                                                    | 7     | 19   | 45            | 2.67   | 1.26                | 0.515             |  |  |  |
| 27                     | 7                                                     | 6     | 24   | 66.5          | 8.97   | 3.38                | 2.41              |  |  |  |

|                        | Return Period of SEDIMENT YIELD in Event by Event Output |       |      |               |        |                     |                   |  |  |  |
|------------------------|----------------------------------------------------------|-------|------|---------------|--------|---------------------|-------------------|--|--|--|
| Recurrence<br>Interval | Day                                                      | Month | Year | Precipitation | Runoff | Peak                | Sediment<br>Yield |  |  |  |
| (yr)                   |                                                          |       |      | (mm)          | (mm)   | (m <sup>3</sup> /s) | (t/ha)            |  |  |  |
| 2                      | 23                                                       | 6     | 11   | 27.2          | 0.108  | 0.0665              | 0.000462          |  |  |  |
| 5                      | 29                                                       | 7     | 2    | 30            | 0.975  | 0.469               | 0.121             |  |  |  |
| 13                     | 16                                                       | 7     | 19   | 45            | 2.67   | 1.26                | 0.515             |  |  |  |
| 27                     | 7                                                        | 6     | 24   | 66.5          | 8.97   | 3.38                | 2.41              |  |  |  |

#### References

- BSCC, 2009a. Sediment Control Plan, Big Sky Mine Area A Permit No. 83004CR. Report submitted to Montana Department of Environmental Quality, Big Sky Coal Company.
- BSCC, 2009b. Sediment Control Plan, Big Sky Mine Area B Permit No. 880048. Report submitted to Montana Department of Environmental Quality, Big Sky Coal Company.
- Gesch, D., M. Oimoen, S. Greenlee, C. Nelson, M. Steuck, and D. Tyler, 2002. The national elevation dataset. *Photogram. Eng. Remote Sens.* 68: 5–11.
- Gesch, D.B., 2007. The National Elevation Dataset. In: Maune, D., ed., Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2<sup>nd</sup> ed, Bethesda, MD, Am. Soc. Photogram. Remote Sens., p. 99–118.
- Homer, C., C. Huang, L. Yang, B. Wylie, and M. Coan, 2004. Development of a 2001 national landcover database for the United States. *Photogram. Eng. Remote Sens.* 70: 829–840.
- Nicks, A.D., L.J. Lane, and G.A. Gander, 1995. Weather generator. Ch. 2, in: D.C. Flanagan, M.A. Nearing, eds. USDA-Water Erosion Prediction Project: Hillslope profile and watershed model documentation. NSERL Rep. No. 10, USDA ARS NSERL, West Lafayette, IN.
- NOAA, 2011. Online Climate Data Directory. National Oceanic and Atmospheric Administration. Available at: http://www.ncdc.noaa.gov/oa/climate/climatedata.html. Accessed May 4, 2011.
- NRCS, 2011. Soil Data Access Web Services. USDA Natural Resources Conservation Service. Available at: <u>http://sdmdataaccess.nrcs.usda.gov</u>. Accessed on May 4, 2011.