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Disclaimer 
 
This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government 
or any agency thereof. 
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Abstract 

 Contaminated discharges can result from flooding of underground mines and acid 
forming chemical reactions and subsequent discharge to surface water. There is a need 
for more data-based prediction methods of post-mining water level for use in continued 
permitting of lands for coal mining. Under the Surface Mining Control and Reclamation 
Act (SMCRA), coal companies are required to estimate the post-mining water levels to 
determine if a mine pool will form and if there may be a pollutional discharge, but there 
lacks a consistent, data-based method for determining the hydrologic response to mining.  

This project sought to address the gap in prediction by analyzing parameters of 
mine pool formation in post-SMCRA mines through multivariate analyses. Analyses 
were done in both the Unscrambler X, for multivariate statistical analysis, and 
Neuroshell, for artificial neural network modeling. An algorithm produced in Neuroshell, 
an artificial neural network program, resulted in the least amount of error and was 
incorporated into a tool for modeling post-mining potentiometric head elevation through 
ArcGIS Pro model building function. The predictive tool developed in ArcGIS Pro was 
made to output points of predicted post-mining water levels in the coal bearing region of 
Ohio. The tool only requires input of data that would be required for an underground 
mine permit application. This project’s final output is an empirically predictive ArcGIS 
tool that is publicly available for download to be used as a new approach to science-based 
estimation of underground mining effects on area hydrology. Methods used to develop 
both the algorithm and the tool in ArcGIS Pro can be used in other coal bearing regions 
around the world to develop a similarly useful tool for understanding connections 
between hydrology and underground mining.  
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Executive Summary 

The purpose of the project was to develop empirical, multivariate relationships between 
water level and mining, geologic, and geographic variables in mining areas and to use 
that relationship to develop a GIS tool that can predict post-mining water level based on 
pre-mining data. This addressed the challenge of estimating probable hydrologic 
consequences of mining. Underground mining can have a profound effect on 
groundwater levels, flow rates, and directions. These complex systems do not lend 
themselves to deterministic prediction methods. Instead, this project undertook a 
multivariate empirical approach using over 2000 water level measurements in and around 
post-SMCRA underground coal mines in Ohio for model development. 

A geodatabase was developed for the coal-bearing region of Ohio that includes pre- and 
post-SMCRA coal mines areas, terrain, coal elevation and thickness, overburden 
thickness, and composition of overburden. Additionally, precipitation and the amount of 
coal mined at the particular time when the head was measured served as key variables in 
the analysis. These data were then analyzed using two methods: multivariate statistical 
analysis and artificial neural networking. The multivariate statistical analysis was 
conducted in the Unscrambler X and included PCA, PCR, and PLSR. The three methods 
suggested similar weighting of variables, the error of prediction was the lowest with 
PLSR, however, may have still been as high as 4%. Artificial neural networking (ANN) 
develops complex empirical relationships between dependent and independent variables. 
Using ANN, a predictive algorithm with only 1% error was derived. The algorithm was 
selected from several options which varied in the inclusion of variables, complexity and 
error level. One algorithm that balanced these factors was selected as the predictive 
algorithm. This algorithm includes multiple variable transformations and mathematical 
functions. It is purely empirical and, it suggests a weighted importance of variables which 
was consistent with the multivariate statistical analysis. 

To achieve the goal of creating a GIS tool to use the selected algorithm to predict post-
mining water level, a tool was created using the Model Builder function in ArcPro with 
some custom Python code. Model Builder is a robust model development platform. 
However, it requires tight control on data format and occasionally mishandles memory, 
so that a reboot is required. Template input files were developed to allow a future user to 
input data in a format that will allow the tool to function. Within the tool, several 
variables are calculated or transformed. For example, the area of mines within a 4-mile 
buffer of the study mine is calculated to represent the interconnectedness and change in 
hydraulic conductivity of the area. The tool was compiled and packaged for download 
from the project website: http://www.watersheddata.com/MinePool_Study.aspx. In 
testing against known piezometric measurements in Ohio, error remained low, 1.24%. 
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The project website includes the model, a user’s guide, fact sheets, links to two project 
webinars, and links to three Masters theses developed through the project.  
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Introduction 

Worldwide, pollutional discharges from coal mining have been and continue to be 
an environmental issue (Younger, 2000; Underwood et al., 2014; Lottermoser, 2015). 
Coal extraction has been a dominant industry providing the United States with energy 
since the 1800s, and with this long-term extraction comes long term environmental 
degradation (Crowell, 2005). Underground mining can affect surface water in the area of 
the mine through alteration of the local hydrology and formation of mine pools that can 
discharge to the surface. Coal extraction can result in a variety of chemical reactions with 
the minerals previously underground in anoxic conditions, now exposed to atmospheric 
conditions. Acid mine drainage (AMD) has been, and continues to be, a major 
environmental threat in the eastern U.S. in areas with a history of coal mining. Research 
in recent years has focused on remediation techniques (e.g. Wei et al., 2017). In addition 
to the focus on remediation, the high complexity of the system variables influencing 
AMD generation limits progress on research of such systems. Thus, research on the 
prediction of AMD discharge is sparse, resulting in a lack of understanding the systems 
and influences of this environmental hazard. Reliable prediction of the formation of mine 
pools and the possibility of acid generation at the permit level would prevent initial 
degradation and remove the need for and cost of remediation efforts. Research into 
understanding major variables determining the formation of underground mine pools and 
their discharge to the surface is needed in order to propose updated methods and tools for 
decreasing environmental harm from continued coal mining. 

Study Area: Coal Bearing Region of Ohio 

The eastern portion of Ohio sits in the Appalachian basin which, along with 
Pennsylvania and West Virginia, host the Appalachian coal field. The coal formed in this 
area of the country is high in sulfur content and thus not as pure or high quality as 
western coal (Crowell, 2005). The elevated sulfur and common occurrence of pyrite 
(FeS2) are highly reactive when in contact with atmospheric oxygen and water, resulting 
in AMD.  The occurrence of AMD can form naturally from mineral exposure to the 
surface, but also commonly forms during mining activities, both surface and 
underground. The effects of surface mining can be mitigated through capping waste piles, 
preventing water run-off, and diverting flow from passing through the mine area where 
minerals are exposed (Akcil and Koldas, 2006). Pollution from underground mining is 
difficult to mitigate, as AMD forms when a mine potentially fills with water and air, 
while sealing and/or collapsing mines does help reduce possible acid generation, it does 
not remove the possibility (Singer and Stumm, 1970).  

 This project focuses on post-SMCRA underground coal mines in eastern Ohio, 
shown in Figure 1. The Surface Mining Control and Reclamation Act (SMCRA) of 1977 
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made it mandatory for companies to obtain a permit prior to coal mining. The 
applications for mine permits require providing plans and finances for environmental 
protection and reclamation if pollution were to occur in the permitted area. Companies 
are required to determine the probable hydrologic consequences of the mine in the mine 
permit as part of the plans for environmental protection. If a mine pool is determined 
likely to form, and that the pool may form a pollutional discharge to the surface, the 
permit application may be denied.  

Mine permit applications require coal companies to provide a characterization of 
area geology and hydrology. This study of hydrology includes determining where the 
water will rise to within the mine void post-mining, determining if the mine will form a 
mine pool and have the possibility of creating a pollutional discharge to surface waters. 
Mining companies in the Appalachian coal field do not have a strong science-based 
method for determining post-mining water levels and currently use the top elevation of 
the coal seam being mined as an estimate for post-mining water levels.  
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Figure 2 - Map of study area with pre-SMCRA, post-SMCRA and specific post-SMCRA 
study mines highlighted that are the focus of this project 
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Project Goals 

The main research question addressed is Can post-mining water level be 
predicted, within acceptable error, through multivariate analysis of hydrologic and 
geologic parameters and spatial interpolation? This question is approached in several 
stages; first through testing approaches for multivariate analysis to determine 
relationships of hydrologic and geologic parameters and develop an algorithm to predict 
post-mining water levels using these relationships, and secondly through applying spatial 
interpolation methods for creating a surface of predicted post-mining water levels based 
on point predictions. These two approaches are finally incorporated in a user-friendly 
ArcGIS tool that automatically runs point predictions and risk areas as part of the on-
going OSMRE funded project. 

The tasks to address this question are to: 1) use individual potentiometric head 
measurements instead of averages to obtain larger data set for multivariate analysis, 2) 
determine best spatial interpolation method for expanding point predictions to area 
predictions, 3) develop functioning tool for ArcGIS that extracts variables, applies 
prediction algorithm, and runs spatial analysis to predict risk area surfaces, and 4) 
determine the range of acceptable error in both algorithm and interpolation surface in the 
empirical model. The major outcome of this project is the GIS-based tool for predicting 
post-mining water levels and risk for mine pool formation and surface discharge in the 
coal bearing region of Eastern Ohio. The method for developing the prediction tool and 
risk areas will be applicable to other coal producing regions with slight regional 
adjustments in the weighting of variables in the development of the prediction equation. 
The development of this empirical method for predicting post-mining water levels will 
thus not only address Ohio’s gap of a science-based method of prediction, but also 
provide a greater understanding of hydrologic effects of underground mining to be 
applied in regions globally. This project establishes a viable methodology that can be 
applied to other coal regions of the world. 

Experimental Approach 

The response of groundwater to the perturbation of exploiting an underground 
mine is the object of this investigation. For the purpose of this project and the previous 
work, it is assumed that measures of potentiometric head in higher strata aquifers respond 
the same as the lower strata aquifers that contain the underground mines. While 
measurements in a monitoring well are clearly not the same as potentiometric head 
measures within the mine, area hydrology responds similarly due to the 
interconnectedness of groundwater hydrology (Means et al., 2018). Thus, predictions of 
potentiometric head measures can be extrapolated to the coal layers in the lower aquifers 
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to gauge the hydrologic response within the mine after closure when potentiometric head 
data in the mined strata are lacking. 
 All data collected were from public data sources, consequently results can be 
available for public use. The majority of data analysis and compilation was performed in 
ArcGIS Pro, as opposed to other open source geospatial programs or ArcMap, because 
ArcGIS is widely used as the standard by the state agencies and mining companies that 
are the target users of the project outputs. ArcGIS Pro was used opposed to ArcMap due 
to ArcGIS Pro set to be the replacement for ArcMap as the standard within several years. 
The data formats are usable in ArcMap and the tool can be modified to run in ArcMap. 
 Due to the large amount of data and multiple variables examined for their 
influence on mine pool formation, complex multivariate methods were used to 
understand the relationship of variables and form a predictive method. Multivariate 
regression models were developed to further understand the variable relationships as well 
as form a predictive algorithm to use in the GIS model. 

Initial work on this project has collected data from public sources and recent 
analyses have identified several key variables in determining the formation of a mine 
pool (Lopez and Kruse, 2015). Independent variables examined for this project include: 
surface elevation, bottom elevation of well, overburden thickness, thickness to mined 
coal, thickness of shale and clay in overburden, separate thicknesses of coal, sandstone, 
and limestone, total coal volume extracted, acres of underground mines within 4 miles, 
average precipitation, and water withdrawal over distance (Schafer, 2018). Schafer 
(2018) and Twumasi (2018) were instrumental in developing the approach methods and 
analysis for the predictive model. Multiple analytic methods were employed to verify 
robustness of results, and allow for selection of the best method.  

Twumasi’s (2018) work focused on artificial neural network (ANN) development 
and modeling of groundwater of the Meigs Mine complex. He used the program 
MODFLOW to examine the formation and sensitivity of variables causing mine pool 
formation in the Meigs Mine complex. For ANN work Twumasi (2018) used the Group 
Method of Data Handling (GMDH) simulation to run data sets with both water 
withdrawal data and no water withdrawal data. This final project phase also followed the 
methods selected for running the ANN program Neuroshell that Twumasi (2018) used in 
his work.  

Schafer (2018) focused on multivariate statistical analysis and determining model 
parameters, with specific focus on the mine D-0360. The majority of the data extraction 
and format of data needed for analysis was determined by the work of Schafer (2018). 
She analyzed the data set from 11 mine permits in Unscrambler X using minimum, 
maximum, and averaged potentiometric head measurements over the period of record, as 
well as performing analyses with and without water withdrawal data. She found that 
using partial least squares regression using the amount of coal mined at the point of water 
level measurement showed a strong relationship with low error. While the results of 
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Twumasi’s analyses correlated with Schaefer’s done in Unscrambler X, the later method 
was selected due to findings of greater significance. Schaefer’s analysis was repeated by 
Steinberg (2019) on an expanded data set to develop the model algorithm. 
 In the approach taken by Schafer (2018) and Twumasi (2018) data were collected 
and organized by well site and an average, minimum, or maximum potentiometric head 
measurement was used for multiple measurements at each site. For the final phase 
(Steinberg, 2019), instead of each well represented as a single measurement, each 
measurement in time was used, resulting in 5 times the amount of data points available 
for analysis and a more accurate approach. 
 An important assumption in these previous projects (Schafer 2018, Twumasi 
2018) was the ability to extrapolate the prediction of water levels at well locations at 
elevations above the coal seam down to the mined coal seam. The extrapolation of the 
water level prediction is possible due to the interconnections of the area hydrology 
regardless of the discontinuous nature of some of the layers.  

Collection of Data 

 Significant variables to mine pool formation were determined through various 
multivariate methods, similar to use in previous studies (Pradhan, 2010; Schafer, 2018; 
Twumasi, 2018). Various sources were explored for useful data for prediction of mine 
pool formation in the area of Eastern Ohio.  Types of data sets collected have geographic 
references for use in spatial analysis, some were downloaded in a shapefile format and 
others as a data table. The mines of focus for this study are post-SMCRA underground 
mines in eastern Ohio, of which there is a shapefile of digitized areas from ODNR that 
includes information such as area of mine, type of mining, and coal seam(s) mined. 
Previously downloaded rasters of statewide elevation and top of coal elevation were also 
used in this study. Figure 2 displays data downloaded or extracted. 
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Figure 2 – A map displaying mine shape files downloaded from ODNR, as well as the 
raster layers of coal seams and the DEM 

 
Scanned PDF format mine permits required manual extraction of borehole and 

water well data into Excel sheets. These sheets were formatted to require that only useful 
data were collected and assure it was recorded so it could be merged into ArcGIS for 
analysis. Data extracted from the mining permits for wells included: location data, 
projection (if recorded), surface elevation, depth of well, static water level, and aquifer 
type. Data for boreholes collected included: location data, projection (if recorded), 
surface elevation, bottom elevation, overburden thickness, thickness of coal mined, 
percent lithology of shale, limestone, sandstone, clay and coal. These percentages were 
later converted to total thicknesses.  

For some mines with few points of well data in the main permit application, well 
data were also extracted from post-mining quarterly monitoring reports (QMRs) 
requested from ODNR. The same Excel format used in collecting well data from permit 
wells was used for QMR wells.  

Precipitation data were collected for each mine, but due to the range of time the 
well data spans, a complete data set for local precipitation for each mine was too 
cumbersome to include in the analysis. Figure 3 is the map of annual average 
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precipitation used in this analysis and in Schafer (2018) and Twumasi (2018). While the 
map is from a likely outdated data set from the 1990’s, it was determined to be the most 
comprehensive and easily accessible dataset for the area of the study mines. Additionally, 
the precipitation across the area is not highly variable and likely would not be a 
significant variable between mines so averages in the area are sufficient for this analysis. 
This map was overlain as a tiff image and georeferenced with in ArcGIS. Precipitation 
values were then read off the map at each well location. Values of average annual 
precipitation were often the same for wells for a single mine, with the larger mines being 
the exception. 
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Figure 3 – Map of average annual precipitation for the state of Ohio used to extract 
average precipitation data for the area of mines studied, (ODNR Division of Water 
Resources, 1980) 
 

Accumulative volume of coal extracted from each underground mine was also 
collected for use as a variable in the multivariate analyses. This variable was used to 
represent the amount of void space created from mining to represent how much water 
was pumped out of the mine. Data were downloaded for each mine permit from U.S. 
Department of Labor’s Mine Data Retrieval System (U.S. Department of Labor, 2019). 
Coal volumes are recorded quarterly, so values for each quarter were copied to Excel 
sheets. For each well, the date of measurement was used to determine the quarter of coal 
extraction to calculate the total coal extracted at the point in time. The final accumulative 
amount of coal extracted from closed mines was also calculated. This method for 
extracting the accumulative coal volume extracted was developed by Schafer (2018). 

Variable Extraction from ArcGIS 

 Well stratigraphy was often not available in the permits. However, there are a 
large number of borehole data available in most mines. To relate the well stratigraphy 
with the borehole data, the nearest borehole to each well were extracted from maps of 
existing or collected data in ArcGIS Pro. Similarly, the acres of existing underground 
coal mines in a buffer area around the study mine was also extracted. Existing older 
underground coal mines must affect the hydrology of the proposed mine. 

The nearest borehole to each well was used to extrapolate an approximate 
lithology for the area. Figure 4 displays the process in ArcGIS using the tool ‘spatial join’ 
with the parameter ‘closest’ used to determine which borehole was closest to each well. 
From this the values for borehole lithology were joined to each well, providing values for 
the lithology related variables (overburden thickness, coal seam mined thickness, 
clay/shale thickness, limestone thickness, sandstone thickness, total coal thickness).  

The acreage of mined area within a buffer around each mine permit area was 
calculated from both the pre-SMCRA and post-SMCRA mine shapefile layers acquired 
from ODNR. Several buffer distances were tested to determine what distance should be 
used for the analysis. As displayed in Figure 5, buffers of 1, 2, and 4-miles were tested. 
The 4-mile buffer distance from the study mine produced the best results, likely due to 
the heavy influence of void space on the area hydrology (Schafer, 2018). Once a buffer 
was created, the pre- and post-SMCRA layers were clipped within the buffer area and 
those clipped shapes were used to calculate the area of void space around the study mine. 
This value was extracted in square feet then converted to acres for analysis. 
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Figure 4 – Map that displays the use of the spatial join tool in ArcGIS Pro to obtain the 
lithology of the closest borehole and join it to the well points 
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Figure 5– Map displaying the development of buffer zones, of which ultimately the 4 mile 
buffer zone was used, in exctracting the area of undergound mining activity surrounding 
the study mine 
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Multivariate Analysis and Modeling 

 For mine pool formation, the potentiometric head is investigated as the dependent 
variable for determining independent variables relationships. Multivariate regression 
analyses were run in several programs to determine the relationships between and 
significance of the variables. These analyses were run first in the multivariate statistical 
program The Unscrambler X version 10.5, which describes the relationship of the 
independent variables and provides regression equations for different regression methods. 
Analyses of the variables were also run in a second program, Neuroshell 2.0, which uses 
artificial neural networks (ANN) to determine relationships of the variables and produce 
a complex polynomial regression equation for determining potentiometric head post-
mining.  These equations were compared by their complexity and root mean squared 
errors to determine which equation to apply in predicting post-mining water levels 
through the ArcGIS tool.  

Multivariate Statistical Analyses 

Initial statistical analysis of the variables examined were run in the program 
Unscrambler X, following methods developed by Schafer (2018). Methods of 
multivariate analysis tested were multiple linear regression (MLR), principal component 
regression (PCR), principal least square regression (PLS) and principal component 
analysis (PCA) (Schafer, 2018). These methods develop interpretations of the 
relationships of the variables input and produces a multivariate linear regression equation 
to represent those relationships. These methods were the same tested by Schafer, 2018, 
but re-run with the new expanded data set to compare results and accuracy with Schafer’s 
results, and to further develop the predictive model.  

MLR was not appropriate for this data set, as it requires variables be independent 
of one another, which is not the case with this data set. PCA was used in defining 
variables and determining their relationships. MLR and PCA are explained in detail in 
Schafer (2018) and in CAMO (2019). 

PCR is a combination of PCA and MLR, where the variances of the principal 
components (PC) are compared in multidimensional space as in PCA, and then form a 
regression using the relation of the variance of the Y component to the X components as 
in MLR (CAMO Software AS, 2019). Figure 6 displays this method, showing the 
combination of PCA and MLR methods for describing the multidimensional space of the 
data.  
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Figure 6 - Visual representation of the process of PCR, using PCs to describe the 
variance in the Y, (CAMO Software AS, 2006) 

 

PLSR is a combination of PCA and MLR, but instead of comparing PCs to each 
other, defines the X and Y matrices as factors, which are then compared as PCs to define 
the X relationship to predicting Y. Figure 7 displays how these matrices define the Xs 
and Ys and then compare them. This data set though only has one Y variable.  

 

 

Figure 7  – Visual representation of the process of PLSR, where the X and Y variable 
matrices are compared as PCs, (CAMO Software AS, 2006) 
 



24 
 

   

 

PLSR and PCR previously produced the most accurate regression equations, with 
PLSR resulting in slightly less error, and thus were the focus for this study (Schafer, 
2018). Both regression models are multivariate linear regression analyses that identify an 
axis in multidimensional space to represent the variance between variables and to best 
represent their relationships. 

The PLSR and PCR analyses in the Unscrambler X also provide results that allow 
for identification of outliers in the data set through looking at the analysis resulting 
residuals. The data residuals are how far each sample is from the axis, or PC, that is 
defining the variable in multidimensional space (Figure 8). Samples with large residual 
values may be skewing results, thus can be identified as outliers and removed (CAMO 
Software AS, 2006, 2019). The values of the residuals are also used to determine the 
model error.  

 

 

Figure 8 – Visual representation of the sample residuals along a principle component 
(PC) that is defining X variables in multidimensional space (CAMO Software AS, 2006) 
 

Artificial Neural Networks 

 The program Neuroshell 2 version 4.0, first developed in 1993, was used as a 
second method for developing an algorithm to predict post-mining potentiometric head 
elevation. Neuroshell is a program that utilizes the construction of artificial neural 
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networks to analyze complex non-linear relationships between input data and determine 
‘weights’ for input variables to form a polynomial equation (Twumasi, 2018). An 
artificial neural network is defined as a mathematical model that runs a computational 
simulation that imitates the behavior patterns of neurons in the human brain to perceive 
patterns in data, to ‘learn’ from a training data set (Sánchez‐Mesa et al., 2002; Twumasi, 
2018). Described in ‘Neural Network Overview’ of Ward Systems Groups Inc.’s 
Neuroshell 2 help document, neural networks construct neurons to develop networks of 
interconnected neurons from input data (input neurons) that are able to use connections 
through layers of hidden neurons to produce an output network (output neurons) in which 
the connections or weights between neurons describe the data set relationships. Figure 9 
shows the input, hidden, and output neurons, with line in between them indicating the 
weights of the network connections, and each type of neuron representing a layer. 
Multiple layers of hidden neurons are often constructed to further the learning process of 
the network (Ward Systems Group, Inc., 2019). 

 

Figure 9 – Visual representation of the development of neuron layers in the creation of 
an artificial neural network, connected by lines representing the weighting of the network 
connections, (Ward Systems Group, Inc., 2019) 
 

 The learning module used for developing the equation was Group Method of Data 
Handling (GMDH) with the Advanced Training Criteria, the same as previously used 
successfully in Twumasi (2018). The advanced training option for GMDH allows the 
user greater freedom in selection of training criteria. These training criteria options 
determine how the program selects or removes ‘neurons’, or polynomial factors, from 
‘layers’ in the construction of the algorithm (Ward Systems Group, Inc., 2019). Also 
selected from the Advanced Training Criteria were the ‘schedule type’ as Asymptotic 
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with ‘decrease in maximum number of survivors’ as Gentle. For this project, only the 
options ‘selection criteria’ and ‘model optimization’ were varied.  
 Selection criteria is the most important parameter when designing a GMDH 
model as the options determine how neuron ‘survivors’ are selected (Ward Systems 
Group, Inc., 2019). For selection criterion, Prediction Squared Error (PSE), Full 
Complexity Prediction Squared Error (FCPSE), Minimal Description Length (MDL), 
Generalized Cross Validation (GCV), Final Prediction Error (FPE), and Regulatory 
(calibration) were all tested, with each option for model optimization as well. PSE is a 
combination of two terms in determining selection, the model average squared error and 
an overfitting penalty. FCPSE is a modified version of PSE that takes into account the 
model complexity instead of number of coefficients. MDL is also similar to PSE but has 
a greater value for the overfitting penalty. GCV is another version of applying an 
overfitting penalty. FPE takes into account the minimum variance of the mean-squared 
error of model prediction. Regulatory is different in that it looks at the average squared 
error of the model when applied to a test set manually selected out of the main data set.  
 Model optimization options tested were Smart, Thorough, and Full. The 
optimization options are for improving the model by removing terms deemed 
unnecessary, to either improve function or accuracy, and can affect how the model 
determines significant variables (Ward Systems Group, Inc., 2019). Smart provides a 
balance between calculation speed and model quality. Thorough is similar to Smart but 
looks closer at selecting significant variables. Full is the most complex approach in that it 
examines all variables combinations at each stage of model development, resulting in a 
highly complex but accurate model.  

ArcGIS Tool Building 

The tool was designed, developed and tested in ArcGIS Pro ModelBuilder. 
ModelBuilder allows a series of geoprocessing tools to be run in a sequence, set up as a 
diagram of chain connected inputs, tools, and outputs (ESRI, 2019c). Parameters required 
for inputs and outputs are defined in the ModelBuilder platform, which when running the 
resulting tool are pulled in and analyzed without further input from the user. The type and 
format for data needed for input into ArcGIS and to be run through the tool are defined as 
templates to be used with running the tool. 

Python Scripting 

 For the application of the selected prediction algorithm, a python script was 
written to manually apply the calculation to variables extracted by the first part of the 
model. The script was written in Python 2.7 and imported as a tool in ArcGIS Pro that 
was then able to be added to the ModelBuilder tool flow. The manual scripting allowed 
for clear and correct pulling of variable values and equation application. 
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Tool Validation 

The tool was tested using existing well and borehole data points to determine the 
reliability of the output of the tool as well as used for de-bugging during construction of 
the tool. Post-mining data from two mine complexes, the Meigs mine complex and the 
Corning mine complex, were explored to be used to validate the tool outputs with 
measured data. While the Meigs mine complex data were used in the development of the 
equation, the data were more complete than any other mine. The Corning mine complex 
was also used, but due to incomplete data, estimations were required for some variables.  

Geostatistical Analysis and Spatial Interpolation 

 Several methods for spatial analysis of the predicted post mining water level were 
explored for the purpose of creating a potentiometric surface representation.  Distribution 
of data made this impossible, however, as data points were too distant to produce 
connectivity within a reasonable range of error.   
 

Results and Discussion  

Multivariate Analysis 

 The two programs The Unscrambler X and Neuroshell 2 were used successfully 
in running the analysis on the post-SMCRA mine data. The analysis followed the model 
structure developed by the previous work of Schafer (2018), and Twumasi (2018), but 
with an expanded data set to further develop the model.  

The Unscrambler X 

The expanded data set was re-analyzed using the same statistical analyses used 
previously by Schafer (2018), to increase accuracy of the prediction equation and 
determine if additional data produced better results. Multivariate analysis in the 
Unscrambler X using PCA, PCR, PLSR regressions showed that PLSR still produced the 
best regression with the least amount of error. These runs were all done with the same 
expanded data set of 2872 data points, 2581 points used for prediction and 291 points 
used for validation (~10 percent of the data set).  

PCA was previously used in determining variable relationships and was re-run 
here to check for consistency in variable relationships with the original analysis and this 
analysis. Figure 10 shows the results of the PCA correlation loading of the variables (all 
considered X variables in PCA) reflects the previous study variable relationships. The 
correlations loading chart displays the model variables in relation to each other, closer 
together the more related and vice versa. It also displays how much of the data variance 
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the variables explain, with the outer ellipse representing 100% explained variance and the 
inner 50% variance. The variables surface elevation, bottom elevation, and 
potentiometric head were all displayed as closely related and near to explaining 100% of 
the data variance. The variable for underground mining in a 4-mile buffer and limestone 
thickness were also important to explaining total variance. 

 

 

Figure 10 – Correlation loadings chart for the PCA run displaying the relationships of 
the variables. The outer ellipse is 100% explained variance and the inner ellipse is 50% 
explained variance. Variables that are closer together are more related. This displays a 
strong relationship between surface elevation, bottom elevation, and potentiometric head 
elevation.  
 

Results from the PCR was able to explain total variance of the data by 3 PCs 
(Figure 11). In Figure 12 the regression’s predicted values versus the actual reference 
values are compared, plotting both the calculation points and the 10 percent validation 
points, at the PC2 level where the most variance is explained. The r-squared value of 
0.972 indicates an accurate regression model. The correlation’s loading diagram in Figure 
13 indicate a strong relationship between the X variables of surface elevation, bottom 
elevation, and the Y variable of potentiometric head, just as displayed in the PCA run. 
Figure 14 also displays the relationships of the examined variables by displaying the 
weights of variables on the regression, still indicating the high level of influence from 
surface and bottom elevations with smaller influences from the other variables. Note that 
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even when some of the variables have a relatively low influence, we need to consider 
them because we are looking at reducing as much as possible the errors and eliminating 
some of those variables can mean increasing the errors. 

 

 

Figure 11 – Graph of explained variance in the PCR run, total explained variance 
required 3 PCs 

 



30 
 

   

 

Figure 12 – Graph of predicted versus reference values for the PCR run, displaying a 
decent regression with r-squared value of 0.973. Calibration data set is blue, and the 
10% validation set is in red 
 

 

 

Figure 13 - Correlation loadings chart for the PCR run displaying the relationships of 
the variables. The outer ellipse is 100% explained variance and the inner ellipse is 50% 
explained variance. Variables that are closer together are more related. This again 
displays a strong relationship between surface elevation, bottom elevation, and 
potentiometric head elevation. 
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Figure 14 - Bar chart displaying the weighting of variables for the PCR run in PC2. PC1 displayed influence heavily in the variable of 
area of mining in the 4-mile buffer, PC2 here displays the influence from the other variables.
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The results of the PLSR were similar to the PCR in that both required 3 
factors/PCs to reach total explained variance (Figure 15), as well as displaying similar 
influences of variables (Figure 16). The correlations loadings chart from the PLSR run 
(Figure 17) displays the relationship of variables similar to the PCR and PCA runs in that 
X variables surface elevation, bottom elevation and Y variable potentiometric head are 
closely related and are near the outer ellipse of 100% explained variance. Also like the 
PCR run, the PLSR run also provided a strong regression, as seen in Figure 18 with the 
predicted values versus the actual reference values of the data set. Compared to the PCR 
run, this regression run has a slightly higher r-squared value of 0.982, and so a slightly 
more accurate model result. This determined PLSR as the best regression analysis in the 
Unscrambler X for the data set and was examined further. Table 1 displays the regression 
coefficients for the PLSR run with this expanded data set.  

 

Figure 15 - Graph of explained variance in the PLSR run, total explained variance 
required 3 factors 
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Figure 16 – Bar chart displaying the weighting of variables for the PLSR run in Factor 2. Factor 1 displayed influence heavily in the 
variable of area of mining in the 4-mile buffer, just as in the PCR run, Factor 2 here displays the influence from the other variable
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Figure 17 - Correlation loadings chart for the PLSR run displaying the relationships of 
the variables. The outer ellipse is 100% explained variance and the inner ellipse is 50% 
explained variance. Variables that are closer together are more related. This again 
displays a strong relationship between surface elevation, bottom elevation, and 
potentiometric head elevation. 
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Figure 18 – Graph of predicted versus reference values for the PLSR run, displaying a 
decent regression with r-squared value of 0.983, better than the PCR run. Calibration 
data set is blue, and the 10% validation set is in red. 
 

Table 5 - Regression variable coefficients from PLSR run 
Variables PLS Coefficients 

β -1.55728 

Surface Elevation (ft msl) 0.47898 

Bottom Elevation (ft msl) 0.52696 

Overburden Thickness (ft) 0.03656 

Mined Coal Seam Thickness (ft) -0.00252 

Shale + Clay Thickness (ft) -0.02280 

Sandstone Thickness (ft) -0.00694 

Limestone Thickness (ft) -0.02862 

Total Coal Thickness (ft) -0.00361 

Total Coal Extracted (Mm^3) -0.02301 

Underground Mines in 4 Mile Buffer (acres) -0.00012 
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Average Annual Precipitation (in) -0.00199 

Also tested with the expanded dataset was the normalization of the variable values 
to determine if adding normalization would help decrease error any. Figure 19 displays 
the PLSR regression run on the normalized values with an r squared value of 0.955, less 
than the PLSR and PCR runs with the non-normalized values. Normalizing the dataset 
produced a similar resulting regression in terms of variable relationships and using 3 
factors to explain total variance but produced more error than non-normalized values. 
From this test it was determined that non-normalized values were to be used exclusively 
for the remainder of the data analysis. 

 

Figure 19 - Graph of predicted versus reference values for the normalized data set PLSR 
run, displaying a regression with r-squared value of 0.955, displaying that normalized 
values have not produced a better regression than the non-normalized values of this data 
set. Calibration data set is blue, and the 10% validation set is in red. 
 

Outliers were identified and removed from the PLSR run through use of the 
Leverage vs. Residual plots produced by the Unscramble X, following the method used 
by Schafer (2018). Figure 20 shows the plots with the outliers removed labeled by the red 
arrows and circles, selected out by the distinct distance from the grouping of points on the 
plots that represent the rest of the dataset. A total of 53 outliers were removed. With the 
exception of the first outliers removed in PLS run 1 from mine D-0360, the other outliers 
were from only two mines, D-1019 and D-2317.  
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Figure 20 – Leverage versus residual 3-dimensional plots used to determine outliers from 
the PLSR run, re-run with the removal of the outliers to form the final regression. 

 

Artificial Neural Network 

 The artificial neural network (ANN) analysis conducted by Twumasi (2018) was 
also re-run with the expanded data set in Neuroshell 2.0 to produce a polynomial 
regression equation (Table 2). As with the previous analyses by Schafer (2018) and 
Twumasi (2018), the ANN equation still resulted in lower error than the less complex 
PLSR regression produced in the Unscrambler X. Variable transformations in the 
previous ANN run were similar to the re-run results, indicating consistency in the 
analyses. The ANN equation was selected as the algorithm incorporated into the ArcGIS 
tool due to the increased complexity resulting in less error of post-mining potentiometric 
head prediction (r-squared values of 0.982 with PLSR vs. 0.9906 with ANN). Testing 
was done for each combination of model optimization and selection criterion parameters 
described in the section Artificial Neural Networks, resulting in 18 test variations, and 
labeled ‘A-R’, described in Table 2. The tests were compared on three model descriptors: 
the number of “less significant variables,” to determine which run kept the majority of 
input variables; r-squared values for comparing errors; and algorithm complexity 
(measured as number of characters) to compare how manageable the equation would be 
in applying to the prediction model. Table 2 was sorted by these model descriptors, 



38 
 

   

 

starting with the lowest ‘number of “less significant variables”’, then the highest ‘r 
squared’, then lastly the lowest ‘algorithm complexity’. From these comparisons, 
equation ‘K’ was selected for further analysis to be selected as the final equation used in 
the ArcGIS tool, as it retains all variables determined significant to predicting post-
mining water levels, has a lower complexity than other runs that retain variables and still 
has a high accuracy (r squared of 0.9906) like the more complex runs.  The resulting 
equation and variable transformations for ANN run ‘K’ is displayed in Table 3. 

 

Table 6 – Neuroshell test runs of model optimizations and model selection criterions, 
sorted by the lowest number of “less significant variables”, then by the highest r squared 
values, and lastly by the lowest algorithm complexity. The selection of test ‘K’ is 
highlighted 
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Table 7 – Resulting equation for test ‘K’ with variable transformations and error results 
Polynomial Net (GMDH) Test 'K' 

Best formula: Y=0.1*X7-4.9E-002*X11+9.2E-002-2.1E-002*X4+1.9E-
002*X9+0.41*X1-1.1E-002*X3+6.5E-002*X6-
0.1*X10+4.3E-002*X5+0.56*X2-0.37*X1^2-
0.38*X2^2+2.5E-002*X11^2-0.14*X2^3-6.5E-
002*X11^3+0.84*X1*X2-
0.24*X1*X11+0.36*X2*X11+3.2E-002*X1*X2*X11-
1.9E-004*X6^2+4.1E-002*X5*X6+4.3E-002*X7^2+4.E-
002*X10^2-2.6E-002*X7^3+5.E-002*X10^3-
0.14*X7*X10-1.1E-002*X9^2-1.6E-002*X9^3-2.5E-
002*X2*X9+1.3E-002*X5^2-2.5E-002*X6^3-1.4E-
002*X1^3+2.E-002*X1*X7+3.1E-002*X6*X10+2.7E-
002*X1*X3+1.4E-002*X9*X11+2.9E-002*X2*X4+1.3E-
002*X8^3-1.6E-002*X8*X11+6.7E-003*X4^2+4.5E-
003*X1*X6 

Variable Transformations: X1=2.*(Surf_Elev (msl)-545.)/835.-1.  
X2=2.*(Bot_Elev (msl)-244.04)/1055.96-1.  
X3=2.*(Overb_Thick (ft)-65.)/638.1-1.  
X4=2.*(MinedCoal_Thick (ft)-.07)/11.69-1.  
X5=2.*(Shale/Clay_Thick (ft)-.35)/552.55-1.  
X6=2.*Sand_Thick (ft)/262.3-1.  
X7=2.*Lime_Thick (ft)/204.97-1.  
X8=2.*TCoal_Thick (ft)/33.23-1.  
X9=2.*Accum_coalextr (Mm^3)/138.61-1.  
X10=2.*(4Mile_Buffer (acres)-2061.)/108987.5-1.  
X11=2.*(AvgAn_Precip (in)-37.5)/3.7-1.  
Y=2.*(PotentioHead (msl)-400.)/932.-1. 

R squared: 0.9906 
Mean squared error: 324.8997 
Mean absolute error: 12.3227 
Min. absolute error: 0.0014 
Max. absolute error: 147.93 

Correlation coefficient r: 0.9953 
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These test runs indicate that FPE and GCV model selection criteria work best for 
developing an accurate algorithm with this type of data, which are very different 
approaches from the other selection criteria options. The other criteria, MDL, PSE and 
FCPSE, were quick to drop the geologic variables out of the equation while GCV and 
FPE kept all variables. This was likely due to the high influence of the hydrologic 
variables. And the selection of ‘K’ suggests that while full and thorough provide the most 
accurate model optimization options, the complexity was also high. Equation ‘K’ used 
the smart method which retained the model accuracy, r-squared of 0.9909-0.9907 to ‘K’s 
0.9906, and halved the complexity. Due to the retention of low error and reasonable 
complexity, this led to the selection of equation ‘K’. 

The selected equation was then validated using actual measured post-mining 
water levels in the Meigs Mine No. 2, permit D-0354, reported in quarterly monitoring 
reports (QMRs) and compared with the predicted values produced by the equation. Table 
4 displays the three points of comparison using the last measurement of the year for 
‘South Mains Shaft’ in 2017 and 2018 and the last measurement of ‘Roving Crew Shaft’ 
in 2018. Publicly accessible data for recent post-mining water level monitoring is limited 
so this data from a well monitored closed mine complex was what existed to work with 
for validation at this stage of the project. The results of applying the model to these 
measurements, with lithology from nearby boreholes collected separately and coal 
extracted variable set to the final maximum value, indicated low percent errors between 
actual measured water level and the algorithm predicted value. Between these three 
points of validation, the average percent error is 1.24%. With this low error, equation ‘K’ 
was determined to be included in the final GIS prediction model. 

Table 8 – Post-mining data test wells in Meigs Mine D-0354 used for validation of ANN 
equation ‘K’ with calculated percent errors. Average percent error was 1.24%. 

 

  

Permit Well Date 

Measured 
Head  

(ft msl) 

Predicted 
Head  

(ft msl) 
Error 

(ft) 
Percent 
Error 

D-0354 
Roving 

Crew Shaft 10/22/18 456.84 443.42 13.42 2.94% 

D-0354 
South 

Mains Shaft 10/22/18 455.94 458.22 -2.28 0.50% 

D-0354 
South 

Mains Shaft 9/11/17 456.88 458.22 -1.34 0.29% 
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GIS Model for Algorithm Application 

 A tool for applying the selected prediction equation was successfully created in 
ModelBuilder of ArcGIS Pro version 2.2 following the structured outlined in the previous 
section ArcGIS Tool Building. Figure 21 is a screenshot of the final structure of the tool 
in ArcGIS Pro ModelBuilder. The tool successfully extracts and combines data from 
input mine permit data and mine extent shapefiles to form a complete table of variable 
data required to apply the developed prediction equation. From this constructed attribute 
table, the Python script is imported as a tool to run the prediction algorithm that is able to 
reference specific columns in the attribute table to transform variables and apply the 
algorithm. The attribute table then has an added column with the predicted values of post-
mining water level at each point of input. These points are then compared with nearest 
point of the area DEM to determine how far above or below the surface the predicted 
water elevation may reach with a final column added to the output points. 

Tool Design  

Development of the design for the ArcGIS tool began in a work flow chart that 
indicates required inputs, GIS tools to be run, and outputs of the tool. Figure 22 is the 
working flow chart for the tool development that is a simplified version of the tool and 
was used for reference in building the structure in ModelBuilder of ArcGIS Pro. On the 
left side of Figure 22 the box labeled ‘Start’ indicates all the required inputs by the user 
for the tool to run. The model flows from left to right, arrows indicating which tools the 
inputs are pulled into, represented by the yellow diamonds. The orange circles indicate 
shapefiles output by the processes run in the tool, grey circles indicating shapefiles that 
are created internally but not added as an output to the user’s map. 
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Figure 21 – A screenshot of the tool structure from within ModelBuilder in ArcGIS Pro. Inputs are blue ellipses, green ellipses are 
outputs, and the yellow squares are ArcGIS tools. Parameters are labeled, input and output, by the ‘P’ to the upper right of the shape. 
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Figure 22 – Work flow diagram for the ArcGIS tool, used as a guide to develop the model in ModelBuilder of ArcGIS Pro 
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The required inputs are well and borehole data in standardized Excel sheets, pre- and 
post-SMCRA underground coal mine shapefiles, proposed coal mine shapefile, and a digital 
elevation model (DEM) raster of the state of Ohio. From these layers, tools in ArcGIS pull the 
variables needed to run the prediction equation for post-mining water level. The main table is 
created from the combination of the projected wells and borehole points, providing lithology to 
each well, as was done in the data extraction (Figure 4). The wells are the points at which the 
algorithm will be applied, so variables are spatially joined to the well points based on the nearest 
borehole. The other variable extracted is the amount of acreage mined within the 4-mile buffer of 
the proposed mine, determined through clipping the input shapes of pre- and post-SMCRA mines 
to the 4-mile buffer created around the proposed mine shape (Figure 5). The tool also calculates 
from the input data the bottom of coal elevation that is used when the prediction equation is 
applied to extrapolate the predicted post-mining water level. 

Once all variables are extracted and merged into a single attribute table for the point 
layer, the custom Python script tool applies the prediction equation reads variables from defined 
columns and adds the predicted post-mining water level as another column in the table. For 
application of the prediction equation within the ArcGIS tool, several approaches were tested. 
With all variables in the same table, the possibility of using the tool ‘Calculate Field’ was 
explored. To use the ANN prediction equation in the field calculator required combining all 
variable transformations into a single equation. This leaves room for error in re-arranging a long 
complex polynomial equation. The alternative option to this approach was to develop a Python 
script that allows the equation to be run in steps, to avoid errors in variable transformation 
calculations. This custom script reads in the variable table created by the first part of the ArcGIS 
tool, accesses defined columns for each variable, and outputs the table with predicted values 
added in a new column.  

Due to the importance of the format of the input data, an Excel sheet template is provided 
for users to organize input data in the required way. If the template is not strictly followed, 
variables will not be correctly labeled and result in either failure of the tool to run or inputs to the 
calculation of post-mining water elevation leading to an invalid result. 

 The final step in the tool process is the comparison of the points of predicted post-mining 
water level to the DEM. The DEM is converted to points of elevation so that a spatial join to the 
nearest elevation point can be applied to the prediction points. With the nearest elevation value 
added to the variable table, the final field in the attribute table is filled with the field calculator 
tool as the surface elevation minus the predicted head elevation, providing a measure of how far 
above or below the surface the water level is predicted to be at post-mining. This field calculator 
step also includes a conversion of units, as the DEM (as most are) is in meters and the 
predictions are in feet mean sea level (ft msl). This is incorporated in the ModelBuilder so that 
conversion of the layer is not left to the user. 

Future work can be done on the creation of a spatially interpolated surface of the water 
table and areas of risk as a next step from the prediction points. The development of the 
prediction water elevation surface requires forming a continuous surface from the point data 
output from the algorithm. Several methods for spatial interpolation of the post-mining water 
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level surface were tested to compare errors. Kriging methods and inverse distance weighting are 
being explored for methods of interpolation.   

 If continued work would be done on developing method for spatial interpolation, the 
surface of the predicted post-mining water level, a set of built in GIS tools can run to compare 
the DEM and the coal mine raster to the post-mining water level surface. The comparison of the 
coal seam raster and the predicted post-mining water level surface would show areas of possible 
mine pool formation (Figure 23). The difference between values of the DEM and the predicated 
post-mining water level surface will determine areas at risk of possible discharge to the surface. 
These risk areas are the main output of the tool, as well as the prediction surface and points of 
predicted post-mining water level.  

 

 

Figure 23 – Diagram to display the different elevation surfaces to be compared for determining 
areas at risk of mine pools and surface discharge 
 

The model was then tested with a selected set of the post-SMCRA mine data for 
validation and trouble shooting. Once the model was running, a template map format was created 
that included the model for user download. As part of the packaged project with the map 
template, default layers are included for the required inputs, as well as templates for the Excel 
sheets required for inputting mine permit data, and a User’s Guide developed to include in step 
by step instruction for running the model. Successful running and packaging of the tool required 
trouble shooting and discovery of bug fixes, which are also included in the User’s Guide 
developed for the tool package (http://www.watersheddata.com/MinePool_Study.aspx).  

Model Validation 

 Testing of the GIS model was run with existing post-SMCRA mine data previously 
extracted for the data analysis. Various runs were done, but the final testing was done with the 
shapefile of permit D-2177 with 30 well points for prediction locations. Figure 24 displays the 
resulting map of this analysis run with points of prediction labeled with their predicted post-
mining water level values. Output by the tool are the point shapefiles of boreholes and well 
points of post-mining water level prediction compared to the DEM. The predictions points are 
symbolized displaying blue circles as greater than zero distance to surface values and red circles 

Surface elevation 

Coal seam elevation 

Predicted post-mining water elevation 

Area risk of mine pool formation 

Area risk of mine pool discharge 
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as negative (or less than zero) distance to the surface. These red points of negative distance to the 
surface are the points of predicted post-mining water level at risk of discharging to the surface 
(Figure 24). In this test run on D-2177, four points of predicted post-mining water level have 
values greater than the surface elevation that indicate a possibility of surface discharge. The user 
has the option of making layers, such as the coal contours or overburden thickness, visible with 
the results. The image shown in Figure 24 is shown with surface topography.  
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Figure 24 – Map of the final outputs of the ArcGIS model for producing points of predicted post-
mining water level with a comparison to the DEM. The mine D-2177 and its permit data were 
used as a test for running the model. 
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Algorithm Application Python Script 

 While using existing tools, such as ‘Calculate Field’, in ArcGIS to apply the prediction 
equation were explored, it was ultimately determined the best way to incorporate the equation 
was to write a separate script to import into ArcGIS Pro ModelBuilder. Writing the script 
allowed for control of the exact process of extracting the correct values for each variable 
transformation and accurately applying the equation. Python 2.7 was used in writing the custom 
script. 
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Discussion 

 This project has successfully developed a multivariate statistically based empirical model 
for predicting post-mining water levels in underground coal mines of eastern Ohio. The methods 
for developing this model can be applied to develop models applicable in other regions with 
underground coal mines but differing geologic and hydrologic parameters.  

Project Outputs 

 Several outputs resulted from this project. The multivariate analyses have provided an 
improved understanding of the relationships between the many variables examined that influence 
the development of mine pool. In addition to this increased understanding, the ability to develop 
a prediction algorithm with reasonable error is a major output of the project. Along with the 
algorithm itself as an output is the model developed to apply the algorithm in ArcGIS Pro. While 
the model is specifically an empirical model not meant to develop deterministically derived 
values for post-mining water level, the model is useful as a planning tool for identifying possible 
areas at risk for surface discharging in areas where mining is being planned. Model validation 
indicated a low percent error of 1.24% in output predicted post-mining water levels when 
compared to measured post-mining water levels, indicating that while it is an empirical model, 
the model can still produce predictions within reasonable error. 

Model Errors 

 Errors in the project outputs were kept as minimal as possible through tracking percent 
error in the selected algorithm. The final selected algorithm from the ANN analysis had an r-
squared value of 0.996, a root-mean-squared-error of 18.03, and when validated with post-
mining water level data had an average error at a 1.24%. 

Other areas of error possibilities are in the data itself as it is reported in the permit 
documents may influence the development of the model and its ability to predict post-mining 
water levels. There is also the aspect of human error in manual data extraction from the PDF 
documents into the Excel sheets that could also have influenced the model development. A 
source of error could also be in the availability of quality data in terms of the lack of water 
extraction values (where coal extraction was used in proxy), lack of borehole lithology at the 
exact location of the well points, and lack of detailed precipitation data instead of an outdated 
areal annual average. Another source of error exists in the assumption made that the empirical 
relationships developed from water level data from a variety of depths can be extrapolated into 
the mined coal layer.  

Comparison of Methodologies 

Figure 25 compares the PLSR results from Schafer, 2018 (A), and the later analysis 
considering all the head measurements (Steinberg, 2019). The re-analysis of PLSR reached 
100% explained variance in 3 factors, same as with the previous run. The errors are similar, but 
the re-analysis with a larger data set had slightly higher error. Coefficients and relationships of 
the variables were also comparable to the previous run, indicating consistency in the determined 
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relationships of variables. The correlation loading chart for the previous regression run and new 
regression displayed the same results in relationships of the variables (Figure 26). This re-run of 
the analysis validated the variable relationships with consistency between the expanded data set 
and the initial data set as well as a larger data set providing more reliability of the results. 

 

Figure 25 – Comparison of predicted versus reference regression graphs of previous PLSR 
analysis by Schafer, 2018 (A) and the analysis considering all the well measurements by 
Steinberg, 2019 (B). While r squared value was not improved, consistency was maintained with a 
more reliable larger data set in (B). 
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Figure 26 – Comparison of correlations loadings graphs of previous PLSR analysis run by 
Schafer, 2018, (A) and the analysis considering all the well measurements by Steinberg, 2019 
(B). Again this comparison displays consistency in the relationships of the variables.  
 

Conclusion 

This project has addressed the need for a better method of determining post-mining water 
levels in undergrounds mines, using data provided in mine permit applications. The results of 
multivariate analyses of significant parameters guided development of an empirical model that 
produces estimated post-mining water levels at well locations. The final algorithm selected for 

B 

A 
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use in the model was determined to estimate water levels within a reasonably usable error within 
1%. Use of the model may increase the evidence for and confidence in the estimation of post-
mining water level. 

The methods developed during the work on this project provide the possibility of 
developing similar empirical models for different areas around the globe. If similar data for 
characterizing the area hydrology and geology can be collected, the analysis to develop the 
prediction algorithm can be re-run and the new area-specific algorithm can be input into the 
model. Results will depend on the quality and density of data collected, no matter the location.  

The relationships discovered between the different hydrologic and geologic parameters 
have expanded on the overall understanding of how these underground mines affect the complex 
systems of groundwater. More research is required to determine why some of these variables are 
more significant than others.  

Currently, requirements for hydrological data collection in the permitting process for 
underground coal mines in Ohio only require “...a minimum of one test hole per one hundred 
sixty acres” and do not define a requirement for well monitoring density (Ohio Administrative 
Code, 2016). While predictions are possible with available data, reliability of predictions would 
be improved, and a surface layer could be extrapolated if higher density data are collected for 
mine permit applications. Data depth could also be improved by the installation of piezometers 
in the mined layers to consistently monitor water levels, as is done in areas of coal mining in 
Pennsylvania. The current requirements are not sufficient for complete characterization of the 
area hydrology and lithology.  

Recommended continued work includes improvement of the model with additional 
quality data, to explore the possibility of spatial interpolation methods working with a data set of 
higher number and higher density data. A study could be done to determine a range of necessary 
density of data and number of points to produce an interpolated surface with low error.  

In addition to further developing the model and exploring spatial interpolation 
possibilities, the next step to predicting if a mine will discharge is if that discharge would be 
pollutional. This would require determining additional variables to the predictive model related 
to surface water chemistry. 

 This prediction model is specific to the coal fields analyzed in Ohio, but methods to 
develop the predictive model could be used to translate the prediction model to another area of 
differing geology and hydrology. In addition to applying to another area, the full extent of this 
model predictability would need to be determined. Continued work could be looking at how far 
this model can predict post-mining water levels outside of the state of Ohio but still within 
similar lithology. 

 Methods used to develop this model and approach to predicting water levels could be 
applied outside of underground mining as well. Other issues in understanding the multivariate 
relationships impacting the change in groundwater levels could adapt the approaches used in this 
project to address issues in other disciplines outside of mining.  
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